
Microsoft Visual Studio (July 2023)

Basic Editing
Visual Studio Code is an editor first and foremost, and includes the features you need for highly
productive source code editing. This topic takes you through the basics of the editor and helps you
get moving with your code.

Keyboard shortcuts
Being able to keep your hands on the keyboard when writing code is crucial for high productivity. VS
Code has a rich set of default keyboard shortcuts as well as allowing you to customize them.

• Keyboard Shortcuts Reference - Learn the most commonly used and popular keyboard
shortcuts by downloading the reference sheet.

• Install a Keymap extension - Use the keyboard shortcuts of your old editor (such as Sublime
Text, Atom, and Vim) in VS Code by installing a Keymap extension.

• Customize Keyboard Shortcuts - Change the default keyboard shortcuts to fit your style.

Multiple selections (multi-cursor)
VS Code supports multiple cursors for fast simultaneous edits. You can add secondary cursors
(rendered thinner) with Alt+Click. Each cursor operates independently based on the context it sits in.
A common way to add more cursors is with Ctrl+Alt+Down or Ctrl+Alt+Up that insert cursors below
or above.

Note: Your graphics card driver (for example NVIDIA) might overwrite these default shortcuts.

Ctrl+D selects the word at the cursor, or the next occurrence of the current selection.

https://code.visualstudio.com/docs/editor/codebasics#_keyboard-shortcuts
https://code.visualstudio.com/docs/getstarted/keybindings#_keyboard-shortcuts-reference
https://code.visualstudio.com/docs/getstarted/keybindings#_keymap-extensions
https://code.visualstudio.com/docs/getstarted/keybindings#_keyboard-shortcuts-editor
https://code.visualstudio.com/docs/editor/codebasics#_multiple-selections-multicursor

Tip: You can also add more cursors with Ctrl+Shift+L, which will add a selection at each occurrence
of the current selected text.

Multi-cursor modifier

If you'd like to change the modifier key for applying multiple cursors to Cmd+Click on macOS
and Ctrl+Click on Windows and Linux, you can do so with the editor.multiCursorModifier setting.
This lets users coming from other editors such as Sublime Text or Atom continue to use the keyboard
modifier they are familiar with.

The setting can be set to:

• ctrlCmd - Maps to Ctrl on Windows and Cmd on macOS.
• alt - The existing default Alt.

There's also a menu item Use Ctrl+Click for Multi-Cursor in the Selection menu to quickly toggle
this setting.

The Go to Definition and Open Link gestures will also respect this setting and adapt such that they
do not conflict. For example, when the setting is ctrlCmd, multiple cursors can be added
with Ctrl/Cmd+Click, and opening links or going to definition can be invoked with Alt+Click.

Shrink/expand selection

Quickly shrink or expand the current selection. Trigger it with Shift+Alt+Left and Shift+Alt+Right.

Here's an example of expanding the selection with Shift+Alt+Right:

https://code.visualstudio.com/docs/editor/codebasics#_multicursor-modifier
https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/editor/codebasics#_shrinkexpand-selection

Column (box) selection
Place the cursor in one corner and then hold Shift+Alt while dragging to the opposite corner:

Note: This changes to Shift+Ctrl/Cmd when using Ctrl/Cmd as multi-cursor modifier.

There are also default key bindings for column selection on macOS and Windows, but not on Linux.

Key Command Command ID

Ctrl+Shift+Alt+Down Column Select Down cursorColumnSelectDown

Ctrl+Shift+Alt+Up Column Select Up cursorColumnSelectUp

Ctrl+Shift+Alt+Left Column Select Left cursorColumnSelectLeft

Ctrl+Shift+Alt+Right Column Select Right cursorColumnSelectRight

Ctrl+Shift+Alt+PageDown Column Select Page Down cursorColumnSelectPageDown

Ctrl+Shift+Alt+PageUp Column Select Page Up cursorColumnSelectPageUp

You can edit your keybindings.json to bind them to something more familiar if you want.

Column Selection mode

The user setting Editor: Column Selection controls this feature. Once this mode is entered, as
indicated in the Status bar, the mouse gestures and the arrow keys will create a column selection by

https://code.visualstudio.com/docs/editor/codebasics#_column-box-selection
https://code.visualstudio.com/docs/editor/codebasics#_multi-cursor-modifier
https://code.visualstudio.com/docs/getstarted/keybindings
https://code.visualstudio.com/docs/editor/codebasics#_column-selection-mode

default. This global toggle is also accessible via the Selection > Column Selection Mode menu item.
In addition, one can also disable Column Selection mode from the Status bar.

Save / Auto Save
By default, VS Code requires an explicit action to save your changes to disk, Ctrl+S.

However, it's easy to turn on Auto Save, which will save your changes after a configured delay or
when focus leaves the editor. With this option turned on, there is no need to explicitly save the file.
The easiest way to turn on Auto Save is with the File > Auto Save toggle that turns on and off save
after a delay.

For more control over Auto Save, open User or Workspace settings and find the associated settings:

• files.autoSave: Can have the values:
o off - to disable auto save.
o afterDelay - to save files after a configured delay (default 1000 ms).
o onFocusChange - to save files when focus moves out of the editor of the dirty file.
o onWindowChange - to save files when the focus moves out of the VS Code window.

• files.autoSaveDelay: Configures the delay in milliseconds when files.autoSave is configured
to afterDelay. The default is 1000 ms.

Hot Exit
VS Code will remember unsaved changes to files when you exit by default. Hot exit is triggered when
the application is closed via File > Exit (Code > Quit on macOS) or when the last window is closed.

You can configure hot exit by setting files.hotExit to the following values:

• "off": Disable hot exit.
• "onExit": Hot exit will be triggered when the application is closed, that is when the last

window is closed on Windows/Linux or when the workbench.action.quit command is
triggered (from the Command Palette, keyboard shortcut or menu). All windows without
folders opened will be restored upon next launch.

• "onExitAndWindowClose": Hot exit will be triggered when the application is closed, that is when
the last window is closed on Windows/Linux or when the workbench.action.quit command is
triggered (from the Command Palette, keyboard shortcut or menu), and also for any window
with a folder opened regardless of whether it is the last window. All windows without folders
opened will be restored upon next launch. To restore folder windows as they were before
shutdown, set window.restoreWindows to all.

If something happens to go wrong with hot exit, all backups are stored in the following folders for
standard install locations:

• Windows %APPDATA%\Code\Backups
• macOS $HOME/Library/Application Support/Code/Backups

https://code.visualstudio.com/docs/editor/codebasics#_save-auto-save
https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/editor/codebasics#_hot-exit

• Linux $HOME/.config/Code/Backups

Find and Replace
VS Code allows you to quickly find text and replace in the currently opened file. Press Ctrl+F to open
the Find Widget in the editor, search results will be highlighted in the editor, overview ruler and
minimap.

If there are more than one matched result in the current opened file, you can
press Enter and Shift+Enter to navigate to next or previous result when the find input box is
focused.

Seed Search String From Selection

When the Find Widget is opened, it will automatically populate the selected text in the editor into the
find input box. If the selection is empty, the word under the cursor will be inserted into the input box
instead.

This feature can be turned off by setting editor.find.seedSearchStringFromSelection to false.

Find In Selection

By default, the find operations are run on the entire file in the editor. It can also be run on selected
text. You can turn this feature on by clicking the hamburger icon on the Find Widget.

https://code.visualstudio.com/docs/editor/codebasics#_find-and-replace
https://code.visualstudio.com/docs/editor/codebasics#_seed-search-string-from-selection
https://code.visualstudio.com/docs/editor/codebasics#_find-in-selection

If you want it to be the default behavior of the Find Widget, you can
set editor.find.autoFindInSelection to always, or to multiline, if you want it to be run on selected
text only when multiple lines of content are selected.

Advanced find and replace options

In addition to find and replace with plain text, the Find Widget also has three advanced search
options:

• Match Case
• Match Whole Word
• Regular Expression

The replace input box support case preserving, you can turn it on by clicking the Preserve Case (AB)
button.

Multiline support and Find Widget resizing

You can search multiple line text by pasting the text into the Find input box and Replace input box.
Pressing Ctrl+Enter inserts a new line in the input box.

https://code.visualstudio.com/docs/editor/codebasics#_advanced-find-and-replace-options
https://code.visualstudio.com/docs/editor/codebasics#_multiline-support-and-find-widget-resizing

While searching long text, the default size of Find Widget might be too small. You can drag the left
sash to enlarge the Find Widget or double click the left sash to maximize it or shrink it to its default
size.

Search across files
VS Code allows you to quickly search over all files in the currently opened folder.
Press Ctrl+Shift+F and enter your search term. Search results are grouped into files containing the

https://code.visualstudio.com/docs/editor/codebasics#_search-across-files

search term, with an indication of the hits in each file and its location. Expand a file to see a preview of
all of the hits within that file. Then single-click on one of the hits to view it in the editor.

Tip: We support regular expression searching in the search box, too.

You can configure advanced search options by clicking the ellipsis (Toggle Search Details) below the
search box on the right (or press Ctrl+Shift+J). This will show additional fields to configure the
search.

Advanced search options

In the two input boxes below the search box, you can enter patterns to include or exclude from the
search. If you enter example, that will match every folder and file named example in the workspace. If
you enter ./example, that will match the folder example/ at the top level of your workspace. Use , to
separate multiple patterns. Paths must use forward slashes. You can also use glob pattern syntax, for
example:

https://code.visualstudio.com/docs/editor/codebasics#_advanced-search-options
https://code.visualstudio.com/docs/editor/glob-patterns

• * to match zero or more characters in a path segment
• ? to match on one character in a path segment
• ** to match any number of path segments, including none
• {} to group conditions (for example {**/*.html,**/*.txt} matches all HTML and text files)
• [] to declare a range of characters to match (example.[0-9] to match

on example.0, example.1, …)
• [!...] to negate a range of characters to match (example.[!0-9] to match

on example.a, example.b, but not example.0)

VS Code excludes some folders by default to reduce the number of search results that you are not
interested in (for example: node_modules). Open settings to change these rules under
the files.exclude and search.exclude section.

Note that glob patterns in the Search view work differently than in settings such
as files.exclude and search.exclude. In the settings, you must use **/example to match a folder
named example in subfolder folder1/example in your workspace. In the Search view, the ** prefix is
assumed. The glob patterns in these settings are always evaluated relative to the path of the
workspace folder.

Also note the Use Exclude Settings and Ignore Files toggle button in the files to exclude box. The
toggle determines whether to exclude files that are ignored by your .gitignore files and/or matched
by your files.exclude and search.exclude settings.

Tip: From the Explorer, you can right-click on a folder and select Find in Folder to search inside a
folder only.

Search and replace

You can also Search and Replace across files. Expand the Search widget to display the Replace text
box.

When you type text into the Replace text box, you will see a diff display of the pending changes. You
can replace across all files from the Replace text box, replace all in one file or replace a single change.

https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/editor/codebasics#_search-and-replace

Tip: You can quickly reuse a previous search term by using Down and Up to navigate through your
search term history.

Case changing in regex replace

VS Code supports changing the case of regex matching groups while doing Search and Replace in the
editor or globally. This is done with the modifiers \u\U\l\L, where \u and \l will upper/lowercase a
single character, and \U and \L will upper/lowercase the rest of the matching group.

Example:

The modifiers can also be stacked - for example, \u\u\u$1 will uppercase the first three characters of
the group, or \l\U$1 will lowercase the first character, and uppercase the rest. The capture group is
referenced by $n in the replacement string, where n is the order of the capture group.

Search Editor

https://code.visualstudio.com/docs/editor/codebasics#_case-changing-in-regex-replace
https://code.visualstudio.com/docs/editor/codebasics#_search-editor

Search Editors let you view workspace search results in a full-sized editor, complete with syntax
highlighting and optional lines of surrounding context.

Below is a search for the word 'SearchEditor' with two lines of text before and after the match for
context:

The Open Search Editor command opens an existing Search Editor if one exists, or to otherwise
create a new one. The New Search Editor command will always create a new Search Editor.

In the Search Editor, results can be navigated to using Go to Definition actions, such as F12 to open
the source location in the current editor group, or Ctrl+K F12 to open the location in an editor to the
side. Additionally, double-clicking can optionally open the source location, configurable with
the search.searchEditor.doubleClickBehaviour setting.

You can also use the Open New Search Editor button at the top of the Search view, and can copy
your existing results from a Search view over to a Search Editor with the Open in editor link at the
top of the results tree, or the Search Editor: Open Results in Editor command.

The Search Editor above was opened by selecting the Open New Search Editor button (third button)
on the top of the Search view.

Search Editor commands and arguments

• search.action.openNewEditor - Opens the Search Editor in a new tab.
• search.action.openInEditor - Copy the current Search results into a new Search Editor.
• search.action.openNewEditorToSide - Opens the Search Editor in a new window next to the

window you currently have opened.

There are two arguments that you can pass to the Search Editor commands
(search.action.openNewEditor, search.action.openNewEditorToSide) to allow keybindings to
configure how a new Search Editor should behave:

• triggerSearch - Whether a search be automatically run when a Search Editor is opened.
Default is true.

• focusResults - Whether to put focus in the results of a search or the query input. Default is
true.

For example, the following keybinding runs the search when the Search Editor is opened but leaves
the focus in the search query control.

{

 "key": "ctrl+o",

 "command": "search.action.openNewEditor",

 "args": { "query": "VS Code", "triggerSearch": true, "focusResults": false }

https://code.visualstudio.com/docs/editor/codebasics#_search-editor-commands-and-arguments

}

Search Editor context default

The search.searchEditor.defaultNumberOfContextLines setting has a default value of 1, meaning
one context line will be shown before and after each result line in the Search Editor.

Reuse last Search Editor configuration

The search.searchEditor.reusePriorSearchConfiguration setting (default is false) lets you reuse
the last active Search Editor's configuration when creating a new Search Editor.

IntelliSense
We'll always offer word completion, but for the rich languages, such as JavaScript, JSON, HTML, CSS,
SCSS, Less, C# and TypeScript, we offer a true IntelliSense experience. If a language service knows
possible completions, the IntelliSense suggestions will pop up as you type. You can always manually
trigger it with Ctrl+Space. By default, Tab or Enter are the accept keyboard triggers but you can
also customize these key bindings.

Tip: The suggestions filtering supports CamelCase so you can type the letters which are upper cased
in a method name to limit the suggestions. For example, "cra" will quickly bring up
"createApplication".

Tip: IntelliSense suggestions can be configured via
the editor.quickSuggestions and editor.suggestOnTriggerCharacters settings.

JavaScript and TypeScript developers can take advantage of the npmjs type declaration (typings) file
repository to get IntelliSense for common JavaScript libraries (Node.js, React, Angular). You can find a
good explanation on using type declaration files in the JavaScript language topic and
the Node.js tutorial.

Learn more in the IntelliSense document.

Formatting
VS Code has great support for source code formatting. The editor has two explicit format actions:

• Format Document (Shift+Alt+F) - Format the entire active file.
• Format Selection (Ctrl+K Ctrl+F) - Format the selected text.

You can invoke these from the Command Palette (Ctrl+Shift+P) or the editor context menu.

VS Code has default formatters for JavaScript, TypeScript, JSON, HTML, and CSS. Each language has
specific formatting options (for example, html.format.indentInnerHtml) which you can tune to your
preference in your user or workspace settings. You can also disable the default language formatter if
you have another extension installed that provides formatting for the same language.

https://code.visualstudio.com/docs/editor/codebasics#_search-editor-context-default
https://code.visualstudio.com/docs/editor/codebasics#_reuse-last-search-editor-configuration
https://code.visualstudio.com/docs/editor/codebasics#_intellisense
https://code.visualstudio.com/docs/languages/overview
https://code.visualstudio.com/docs/getstarted/keybindings
https://code.visualstudio.com/docs/getstarted/settings
https://www.npmjs.com/
https://code.visualstudio.com/docs/languages/javascript#_intellisense
https://code.visualstudio.com/docs/nodejs/nodejs-tutorial
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/codebasics#_formatting
https://code.visualstudio.com/docs/getstarted/settings

"html.format.enable": false

Along with manually invoking code formatting, you can also trigger formatting based on user
gestures such as typing, saving or pasting. These are off by default but you can enable these
behaviors through the following settings:

• editor.formatOnType - Format the line after typing.
• editor.formatOnSave - Format a file on save.
• editor.formatOnPaste - Format the pasted content.

Note: Not all formatters support format on paste as to do so they must support formatting a selection
or range of text.

In addition to the default formatters, you can find extensions on the Marketplace to support other
languages or formatting tools. There is a Formatters category so you can easily search and
find formatting extensions. In the Extensions view search box, type 'formatters' or
'category:formatters' to see a filtered list of extensions within VS Code.

Folding
You can fold regions of source code using the folding icons on the gutter between line numbers and
line start. Move the mouse over the gutter and click to fold and unfold regions. Use Shift + Click on
the folding icon to fold or unfold the region and all regions inside.

You can also use the following actions:

• Fold (Ctrl+Shift+[) folds the innermost uncollapsed region at the cursor.
• Unfold (Ctrl+Shift+]) unfolds the collapsed region at the cursor.
• Toggle Fold (Ctrl+K Ctrl+L) folds or unfolds the region at the cursor.
• Fold Recursively (Ctrl+K Ctrl+[) folds the innermost uncollapsed region at the cursor and all

regions inside that region.

https://code.visualstudio.com/docs/getstarted/settings
https://marketplace.visualstudio.com/search?target=VSCode&category=Formatters&sortBy=Installs
https://code.visualstudio.com/docs/editor/codebasics#_folding

• Unfold Recursively (Ctrl+K Ctrl+]) unfolds the region at the cursor and all regions inside that
region.

• Fold All (Ctrl+K Ctrl+0) folds all regions in the editor.
• Unfold All (Ctrl+K Ctrl+J) unfolds all regions in the editor.
• Fold Level X (Ctrl+K Ctrl+2 for level 2) folds all regions of level X, except the region at the

current cursor position.
• Fold All Block Comments (Ctrl+K Ctrl+/) folds all regions that start with a block comment

token.

Folding regions are by default evaluated based on the indentation of lines. A folding region starts
when a line has a smaller indent than one or more following lines, and ends when there is a line with
the same or smaller indent.

Folding regions can also be computed based on syntax tokens of the editor's configured language.
The following languages already provide syntax aware folding: Markdown, HTML, CSS, LESS, SCSS,
and JSON.

If you prefer to switch back to indentation-based folding for one (or all) of the languages above, use:

 "[html]": {

 "editor.foldingStrategy": "indentation"

 },

Regions can also be defined by markers defined by each language. The following languages currently
have markers defined:

Language Start region End region

Bat ::#region or REM #region ::#endregion or REM #endregion

C# #region #endregion

C/C++ #pragma region #pragma endregion

CSS/Less/SCSS /*#region*/ /*#endregion*/

Coffeescript #region #endregion

F# //#region or (#_region) //#endregion or (#_endregion)

Language Start region End region

Java //#region or //<editor-fold> // #endregion or //</editor-fold>

Markdown <!-- #region --> <!-- #endregion -->

Perl5 #region or =pod #endregion or =cut

PHP #region #endregion

PowerShell #region #endregion

Python #region or # region #endregion or # endregion

TypeScript/JavaScript //#region //#endregion

Visual Basic #Region #End Region

To fold and unfold only the regions defined by markers use:

• Fold Marker Regions (Ctrl+K Ctrl+8) folds all marker regions.
• Unfold Marker Regions (Ctrl+K Ctrl+9) unfolds all marker regions.

Fold selection

The command Create Manual Folding Ranges from Selection (Ctrl+K Ctrl+,) creates a folding
range from the currently selected lines and collapses it. That range is called a manual folding range
that goes on top of the ranges computed by folding providers.

Manual folding ranges can be removed with the command Remove Manual Folding Ranges (Ctrl+K
Ctrl+.).

Manual folding ranges are especially useful for cases when there isn't programming language support
for folding.

Indentation

https://code.visualstudio.com/docs/editor/codebasics#_fold-selection
https://code.visualstudio.com/docs/editor/codebasics#_indentation

VS Code lets you control text indentation and whether you'd like to use spaces or tab stops. By
default, VS Code inserts spaces and uses 4 spaces per Tab key. If you'd like to use another default, you
can modify the editor.insertSpaces and editor.tabSize settings.

 "editor.insertSpaces": true,

 "editor.tabSize": 4,

Auto-detection

VS Code analyzes your open file and determines the indentation used in the document. The auto-
detected indentation overrides your default indentation settings. The detected setting is displayed on
the right side of the Status Bar:

You can click on the Status Bar indentation display to bring up a dropdown with indentation
commands allowing you to change the default settings for the open file or convert between tab stops
and spaces.

Note: VS Code auto-detection checks for indentations of 2, 4, 6 or 8 spaces. If your file uses a
different number of spaces, the indentation may not be correctly detected. For example, if your
convention is to indent with 3 spaces, you may want to turn off editor.detectIndentation and
explicitly set the tab size to 3.

 "editor.detectIndentation": false,

 "editor.tabSize": 3,

File encoding support
Set the file encoding globally or per workspace by using the files.encoding setting in User
Settings or Workspace Settings.

https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/editor/codebasics#_autodetection
https://code.visualstudio.com/docs/editor/codebasics#_file-encoding-support

You can view the file encoding in the status bar.

Click on the encoding button in the status bar to reopen or save the active file with a different
encoding.

Then choose an encoding.

Next steps
You've covered the basic user interface - there is a lot more to VS Code. Read on to find out about:

• Intro Video - Setup and Basics - Watch a tutorial on the basics of VS Code.
• User/Workspace Settings - Learn how to configure VS Code to your preferences through user

and workspace settings.
• Code Navigation - Peek and Goto Definition, and more.
• Integrated Terminal - Learn about the integrated terminal for quickly performing command-

line tasks from within VS Code.
• IntelliSense - VS Code brings smart code completions.

https://code.visualstudio.com/docs/editor/codebasics#_next-steps
https://code.visualstudio.com/docs/introvideos/basics
https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/editor/editingevolved
https://code.visualstudio.com/docs/terminal/basics
https://code.visualstudio.com/docs/editor/intellisense

• Debugging - This is where VS Code really shines.

Common questions

Is it possible to globally search and replace?

Yes, expand the Search view text box to include a replace text field. You can search and replace across
all the files in your workspace. Note that if you did not open VS Code on a folder, the search will only
run on the currently open files.

How do I turn on word wrap?

You can control word wrap through the editor.wordWrap setting. By
default, editor.wordWrap is off but if you set to it to on, text will wrap on the editor's viewport width.

 "editor.wordWrap": "on"

You can toggle word wrap for the VS Code session with Alt+Z.

You can also add vertical column rulers to the editor with the editor.rulers setting, which takes an
array of column character positions where you'd like vertical rulers.

How can I avoid placing extra cursors in word wrapped lines?

If you'd like to ignore line wraps when adding cursors above or below your current selection, you can
pass in { "logicalLine": true } to args on the keybinding like this:

{

 "key": "shift+alt+down",

 "command": "editor.action.insertCursorBelow",

 "when": "textInputFocus",

 "args": { "logicalLine": true },

},

{

https://code.visualstudio.com/docs/editor/debugging
https://code.visualstudio.com/docs/editor/codebasics#_common-questions
https://code.visualstudio.com/docs/editor/codebasics#_is-it-possible-to-globally-search-and-replace
https://code.visualstudio.com/docs/editor/codebasics#_how-do-i-turn-on-word-wrap
https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/editor/codebasics#_how-can-i-avoid-placing-extra-cursors-in-word-wrapped-lines

 "key": "shift+alt+up",

 "command": "editor.action.insertCursorAbove",

 "when": "textInputFocus",

 "args": { "logicalLine": true },

},

Extension Marketplace
Increase the power of Visual Studio Code through Extensions

The features that Visual Studio Code includes out-of-the-box are just the start. VS Code extensions let
you add languages, debuggers, and tools to your installation to support your development workflow.
VS Code's rich extensibility model lets extension authors plug directly into the VS Code UI and
contribute functionality through the same APIs used by VS Code. This article explains how to find,
install, and manage VS Code extensions from the Visual Studio Code Marketplace.

Browse for extensions
You can browse and install extensions from within VS Code. Bring up the Extensions view by clicking
on the Extensions icon in the Activity Bar on the side of VS Code or the View: Extensions command
(Ctrl+Shift+X).

This will show you a list of the most popular VS Code extensions on the VS Code Marketplace.

Each extension in the list includes a brief description, the publisher, the download count, and a five
star rating. You can select the extension item to display the extension's details page where you can
learn more.

https://marketplace.visualstudio.com/VSCode
https://code.visualstudio.com/docs/editor/extension-marketplace#_browse-for-extensions
https://marketplace.visualstudio.com/VSCode

Note: If your computer's Internet access goes through a proxy server, you will need to configure the
proxy server. See Proxy server support for details.

Install an extension
To install an extension, select the Install button. Once the installation is complete, the Install button
will change to the Manage gear button.

Find and install an extension

For example, let's install the popular TODO Highlight extension. This extension highlights text like
'TODO:' and 'FIXME:' in your source code so you can quickly find undone sections.

In the Extensions view (Ctrl+Shift+X), type 'todo' in the search box to filter the Marketplace offerings
to extensions with 'todo' in the title or metadata. You should see the TODO Highlight extension in
the list.

https://code.visualstudio.com/docs/setup/network#_proxy-server-support
https://code.visualstudio.com/docs/editor/extension-marketplace#_install-an-extension
https://code.visualstudio.com/docs/editor/extension-marketplace#_find-and-install-an-extension
https://marketplace.visualstudio.com/items?itemName=wayou.vscode-todo-highlight

An extension is uniquely identified by its publisher and extension IDs. If you select the TODO
Highlight extension, you will see the Extension details page, where you can find the extension ID, in
this case, wayou.vscode-todo-highlight. Knowing the extension ID can be helpful if there are several
similarly named extensions.

Select the Install button, and VS Code will download and install the extension from the Marketplace.
When the installation is complete, the Install button will be replaced with a Manage gear button.

To see the TODO Highlight extension in action, open any source code file and add the text 'TODO:'
and you will see the text highlighted.

The TODO Highlight extension contributes the commands, TODO-Highlight: List highlighted
annotations and TODO-Highlight: Toggle highlight, that you can find in the Command Palette
(Ctrl+Shift+P). The TODO-Highlight: Toggle highlight command lets you quickly disable or enable
highlighting.

The extension also provides settings for tuning its behavior, which you can find in the Settings editor
(Ctrl+,). For example, you might want the text search to be case insensitive and you can uncheck
the Todohighlight: Is Case Sensitive setting.

If an extension doesn't provide the functionality you want, you can always Uninstall the extension
from the Manage button context menu.

This has been just one example of how to install and use an extension. The VS Code Marketplace has
thousands of extensions supporting hundreds of programming languages and tasks. Everything from
full featured language support for Java, Python, Go, and C++ to simple extensions that create GUIDs,
change the color theme, or add virtual pets to the editor.

https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=golang.Go
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=nwallace.createGUID
https://marketplace.visualstudio.com/items?itemName=PKief.material-icon-theme
https://marketplace.visualstudio.com/items?itemName=tonybaloney.vscode-pets

Extension details

On the extension details page, you can read the extension's README and review the extension's:

• Feature Contributions - The extension's additions to VS Code such as settings, commands
and keyboard shortcuts, language grammars, debugger, etc.

• Changelog - The extension repository CHANGELOG if available.
• Dependencies - Lists if the extension depends on any other extensions.

If an extension is an Extension Pack, the Extension Pack section will display which extensions will be
installed when you install the pack. Extension Packs bundle separate extensions together so they can
be easily installed at one time.

Extensions view filter and commands

You can filter the Extensions view with the Filter Extensions context menu.

https://code.visualstudio.com/docs/editor/extension-marketplace#_extension-details
https://code.visualstudio.com/api/references/extension-manifest#_extension-packs
https://code.visualstudio.com/docs/editor/extension-marketplace#_extensions-view-filter-and-commands

There are filters to show:

• The list of currently installed extensions
• The list of outdated extensions that can be updated
• The list of currently enabled/disabled extensions
• The list of recommended extensions based on your workspace
• The list of globally popular extensions

You can sort the extension list by Install Count or Rating in either ascending or descending order.
You can learn more about extension search filters below.

You can run additional Extensions view commands via the ... View and More Actions button.

https://code.visualstudio.com/docs/editor/extension-marketplace#_extensions-view-filters

Through this context menu you can control extension updates, enable or disable all extensions, and
use the Extension Bisect utility to isolate problematic extension behavior.

Search for an extension

You can clear the Search box at the top of the Extensions view and type in the name of the extension,
tool, or programming language you're looking for.

For example, typing 'python' will bring up a list of Python language extensions:

https://code.visualstudio.com/blogs/2021/02/16/extension-bisect
https://code.visualstudio.com/docs/editor/extension-marketplace#_search-for-an-extension

If you know the exact identifier for an extension you're looking for, you can use the @id: prefix, for
example @id:octref.vetur. Additionally, to filter or sort results, you can use
the filter and sort commands, detailed below.

Manage extensions
VS Code makes it easy to manage your extensions. You can install, disable, update, and uninstall
extensions through the Extensions view, the Command Palette (commands have
the Extensions: prefix) or command-line switches.

List installed extensions

By default, the Extensions view will show the extensions you currently have enabled, all extensions
that are recommended for you, and a collapsed view of all extensions you have disabled. You can use
the Show Installed Extensions command, available in the Command Palette (Ctrl+Shift+P) or
the More Actions (...) dropdown menu, to clear any text in the search box and show the list of all
installed extensions, which includes those that have been disabled.

Uninstall an extension

To uninstall an extension, select the Manage gear button at the right of an extension entry and then
choose Uninstall from the dropdown menu. This will uninstall the extension and prompt you to
reload VS Code.

https://code.visualstudio.com/docs/editor/extension-marketplace#_extensions-view-filters
https://code.visualstudio.com/docs/editor/extension-marketplace#_sorting
https://code.visualstudio.com/docs/editor/extension-marketplace#_manage-extensions
https://code.visualstudio.com/docs/editor/extension-marketplace#_list-installed-extensions
https://code.visualstudio.com/docs/editor/extension-marketplace#_uninstall-an-extension

Disable an extension

If you don't want to permanently remove an extension, you can instead temporarily disable the
extension by clicking the gear button at the right of an extension entry. You can disable an extension
globally or just for your current Workspace. You will be prompted to reload VS Code after you disable
an extension.

If you want to quickly disable all installed extensions, there is a Disable All Installed
Extensions command in the Command Palette and More Actions (...) dropdown menu.

Extensions remain disabled for all VS Code sessions until you re-enable them.

Enable an extension

Similarly if you have disabled an extension (it will be in the Disabled section of the list and
marked Disabled), you can re-enable it with the Enable or Enable (Workspace) commands in the
dropdown menu.

There is also an Enable All Extensions command in the More Actions (...) dropdown menu.

Extension auto-update

https://code.visualstudio.com/docs/editor/extension-marketplace#_disable-an-extension
https://code.visualstudio.com/docs/editor/extension-marketplace#_enable-an-extension
https://code.visualstudio.com/docs/editor/extension-marketplace#_extension-autoupdate

VS Code checks for extension updates and installs them automatically. After an update, you will be
prompted to reload VS Code. If you'd rather update your extensions manually, you can disable auto-
update with the Disable Auto Updating Extensions command that sets
the extensions.autoUpdate setting to false. If you don't want VS Code to even check for updates,
you can set the extensions.autoCheckUpdates setting to false.

Update an extension manually

If you have extensions auto-update disabled, you can quickly look for extension updates by using
the Show Outdated Extensions command that uses the @outdated filter. This will display any
available updates for your currently installed extensions. Select the Update button for the outdated
extension and the update will be installed and you'll be prompted to reload VS Code. You can also
update all your outdated extensions at one time with the Update All Extensions command. If you
also have automatic checking for updates disabled, you can use the Check for Extension
Updates command to check which of your extensions can be updated.

Recommended extensions
You can see a list of recommended extensions using Show Recommended Extensions, which sets
the @recommended filter. Extension recommendations can either be:

• Workspace Recommendations - Recommended by other users of your current workspace.
• Other Recommendations - Recommended based on recently opened files.

See the section below to learn how to contribute recommendations for other users in your project.

Ignoring recommendations

To dismiss a recommendation, select on the extension item to open the Details page and then select
the Manage gear button to display the context menu. Select the Ignore Recommendation menu
item. Ignored recommendations will no longer be recommended to you.

Configuring extensions

https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/editor/extension-marketplace#_update-an-extension-manually
https://code.visualstudio.com/docs/editor/extension-marketplace#_recommended-extensions
https://code.visualstudio.com/docs/editor/extension-marketplace#_extensions-view-filters
https://code.visualstudio.com/docs/editor/extension-marketplace#_workspace-recommended-extensions
https://code.visualstudio.com/docs/editor/extension-marketplace#_ignoring-recommendations
https://code.visualstudio.com/docs/editor/extension-marketplace#_configuring-extensions

VS Code extensions may have very different configurations and requirements. Some extensions
contribute settings to VS Code, which can be modified in the Settings editor. Other extensions may
have their own configuration files. Extensions may also require installation and setup of additional
components like compilers, debuggers, and command-line tools. Consult the extension's README
(visible in the Extensions view details page) or go to the extension page on the VS Code
Marketplace (click on the extension name in the details page). Many extensions are open source and
have a link to their repository on their Marketplace page.

Command line extension management
To make it easier to automate and configure VS Code, it is possible to list, install, and uninstall
extensions from the command line. When identifying an extension, provide the full name of the
form publisher.extension, for example ms-python.python.

Example:

code --extensions-dir <dir>

 Set the root path for extensions.

code --list-extensions

 List the installed extensions.

code --show-versions

 Show versions of installed extensions, when using --list-extension.

code --install-extension (<extension-id> | <extension-vsix-path>)

 Installs an extension.

code --uninstall-extension (<extension-id> | <extension-vsix-path>)

 Uninstalls an extension.

code --enable-proposed-api (<extension-id>)

 Enables proposed API features for extensions. Can receive one or more extension IDs to enable
individually.

You can see the extension ID on the extension details page under the Marketplace Info.

https://code.visualstudio.com/docs/getstarted/settings
https://marketplace.visualstudio.com/VSCode
https://marketplace.visualstudio.com/VSCode
https://code.visualstudio.com/docs/editor/extension-marketplace#_command-line-extension-management
https://code.visualstudio.com/docs/editor/command-line

Extensions view filters
The Extensions view search box supports filters to help you find and manage extensions. You may
have seen filters such as @installed and @recommended if you used the commands Show Installed
Extensions and Show Recommended Extensions. Also, there are filters available to let you sort by
popularity or ratings and search by category (for example 'Linters') and tags (for example 'node'). You
can see a complete listing of all filters and sort commands by typing @ in the extensions search box
and navigating through the suggestions:

https://code.visualstudio.com/docs/editor/extension-marketplace#_extensions-view-filters

Here are the Extensions view filters:

• @builtin - Show extensions that come with VS Code. Grouped by type (Programming
Languages, Themes, etc.).

• @disabled - Show disabled installed extensions.
• @installed - Show installed extensions.
• @outdated - Show outdated installed extensions. A newer version is available on the

Marketplace.
• @enabled - Show enabled installed extensions. Extensions can be individually enabled/disabled.
• @recommended - Show recommended extensions. Grouped as Workspace specific or general

use.
• @category - Show extensions belonging to specified category. Below are a few of supported

categories. For a complete list, type @category and follow the options in the suggestion list:
o @category:themes
o @category:formatters
o @category:linters
o @category:snippets

These filters can be combined as well. For example: Use @installed @category:themes to view all
installed themes.

If no filter is provided, the Extensions view displays the currently installed and recommended
extensions.

Sorting

You can sort extensions with the @sort filter, which can take the following values:

• installs - Sort by Marketplace installation count, in descending order.
• rating - Sort by Marketplace rating (1-5 stars), in descending order.
• name - Sort alphabetically by extension name.

Categories and tags

Extensions can set Categories and Tags describing their features.

https://code.visualstudio.com/docs/editor/extension-marketplace#_sorting
https://code.visualstudio.com/docs/editor/extension-marketplace#_categories-and-tags

You can filter on category and tag by using category: and tag:.

Supported categories are: [Programming Languages, Snippets, Linters, Themes, Debuggers,
Formatters, Keymaps, SCM Providers, Other, Extension Packs, Language Packs, Data Science,
Machine Learning, Visualization, Notebooks, Education, Testing]. They can be accessed
through IntelliSense in the extensions search box:

Note that you must surround the category name in quotes if it is more than one word (for
example, category:"SCM Providers").

Tags may contain any string and are not provided by IntelliSense, so review the Marketplace to find
helpful tags.

Install from a VSIX
You can manually install a VS Code extension packaged in a .vsix file. Using the Install from
VSIX command in the Extensions view command dropdown, or the Extensions: Install from
VSIX command in the Command Palette, point to the .vsix file.

You can also install using the VS Code --install-extension command-line switch providing the path
to the .vsix file.

code --install-extension myextension.vsix

https://code.visualstudio.com/docs/editor/extension-marketplace#_install-from-a-vsix

You may provide the --install-extension multiple times on the command line to install multiple
extensions at once.

If you'd like to learn more about packaging and publishing extensions, see our Publishing
Extensions article in the Extension API.

Workspace recommended extensions
A good set of extensions can make working with a particular workspace or programming language
more productive and you'd often like to share this list with your team or colleagues. You can create a
recommended list of extensions for a workspace with the Extensions: Configure Recommended
Extensions (Workspace Folder) command.

In a single folder workspace, the command creates an extensions.json file located in the
workspace .vscode folder where you can add a list of extensions identifiers
({publisherName}.{extensionName}).

In a multi-root workspace, the command will open your .code-workspace file where you can list
extensions under extensions.recommendations. You can still add extension recommendations to
individual folders in a multi-root workspace by using the Extensions: Configure Recommended
Extensions (Workspace Folder) command.

An example extensions.json could be:

{

 "recommendations": ["dbaeumer.vscode-eslint", "esbenp.prettier-vscode"]

}

which recommends a linter extension and a code formatter extension.

An extension is identified using its publisher name and extension identifier publisher.extension. You
can see the name on the extension's detail page. VS Code will provide you with auto-completion for
installed extensions inside these files.

https://code.visualstudio.com/api/working-with-extensions/publishing-extension
https://code.visualstudio.com/api/working-with-extensions/publishing-extension
https://code.visualstudio.com/docs/editor/extension-marketplace#_workspace-recommended-extensions
https://code.visualstudio.com/docs/editor/multi-root-workspaces

.

VS Code prompts a user to install the recommended extensions when a workspace is opened for the
first time. The user can also review the list with the Extensions: Show Recommended
Extensions command.

Next steps
Here are a few topics you may find interesting...

https://code.visualstudio.com/docs/editor/extension-marketplace#_next-steps

• Extension API - Start learning about the VS Code extension API.
• Your First Extension - Try creating a simple Hello World extension.
• Publishing to the Marketplace - Publish your own extension to the VS Code Marketplace.

Common questions

Where are extensions installed?

Extensions are installed in a per user extensions folder. Depending on your platform, the location is in
the following folder:

• Windows %USERPROFILE%\.vscode\extensions
• macOS ~/.vscode/extensions
• Linux ~/.vscode/extensions

You can change the location by launching VS Code with the --extensions-dir <dir> command-
line option.

Whenever I try to install any extension, I get a connect ETIMEDOUT error

You may see this error if your machine is going through a proxy server to access the Internet. See
the Proxy server support section in the setup topic for details.

Can I download an extension directly from the Marketplace?

Some users prefer to download an extension once from the Marketplace and then install it multiple
times from a local share. This is useful when there are connectivity concerns or if your development
team wants to use a fixed set of extensions.

To download an extension, navigate to the details page for the specific extension within
the Marketplace. On that page, there is a Download Extension link in the Resources section, which is
located on the right-hand side of the page.

Once downloaded, you can then install the extension via the Install from VSIX command in the
Extensions view command dropdown.

Can I stop VS Code from providing extension recommendations?

Yes, if you would prefer to not have VS Code display extension recommendations in the Extensions
view or through notifications, you can modify the following settings:

• extensions.showRecommendationsOnlyOnDemand - Set to true to remove
the RECOMMENDED section.

• extensions.ignoreRecommendations - Set to true to silence extension recommendation
notifications.

https://code.visualstudio.com/api
https://code.visualstudio.com/api/get-started/your-first-extension
https://code.visualstudio.com/api/working-with-extensions/publishing-extension
https://code.visualstudio.com/docs/editor/extension-marketplace#_common-questions
https://code.visualstudio.com/docs/editor/extension-marketplace#_where-are-extensions-installed
https://code.visualstudio.com/docs/editor/command-line
https://code.visualstudio.com/docs/editor/extension-marketplace#_whenever-i-try-to-install-any-extension-i-get-a-connect-etimedout-error
https://code.visualstudio.com/docs/setup/network#_proxy-server-support
https://code.visualstudio.com/docs/editor/extension-marketplace#_can-i-download-an-extension-directly-from-the-marketplace
https://marketplace.visualstudio.com/vscode
https://code.visualstudio.com/docs/editor/extension-marketplace#_can-i-stop-vs-code-from-providing-extension-recommendations

The Show Recommended Extensions command is always available if you want to see
recommendations.

Can I trust extensions from the Marketplace?

The Marketplace runs a virus scan on each extension package that's published to ensure its safety.
The virus scan is run for each new extension and for each extension update. Until the scan is all clear,
the extension won't be published in the Marketplace for public usage.

The Marketplace also prevents extension authors from name-squatting on official publishers such as
Microsoft and RedHat.

If a malicious extension is reported and verified, or a vulnerability is found in an extension
dependency:

1. The extension is removed from the Marketplace.
2. The extension is added to a kill list so that if it has been installed, it will be automatically

uninstalled by VS Code.

The Marketplace also provides you with resources to make an informed decision about the extensions
you install:

• Ratings & Review - Read what others think about the extension.
• Q & A - Review existing questions and the level of the publisher's responsiveness. You can also

engage with the extension's publisher(s) if you have concerns.
• Issues, Repository, and License - Check if the publisher has provided these and if they have

the support you expect.

If you do see an extension that looks suspicious, you can report the extension to the Marketplace with
the Report Abuse link at the bottom of the extension More Info section.

https://code.visualstudio.com/docs/editor/extension-marketplace#_can-i-trust-extensions-from-the-marketplace

IntelliSense
IntelliSense is a general term for various code editing features including: code completion, parameter
info, quick info, and member lists. IntelliSense features are sometimes called by other names such as
"code completion", "content assist", and "code hinting."

IntelliSense for your programming language
Visual Studio Code IntelliSense is provided for JavaScript, TypeScript, JSON, HTML, CSS, SCSS, and
Less out of the box. VS Code supports word based completions for any programming language but
can also be configured to have richer IntelliSense by installing a language extension.

Below are the most popular language extensions in the Marketplace. Select an extension tile below to
read the description and reviews to decide which extension is best for you.

Python
90.7M
ms-python

https://code.visualstudio.com/docs/editor/intellisense#_intellisense-for-your-programming-language
https://marketplace.visualstudio.com/vscode
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python

C/C++
49.1M
ms-vscode

C#
22.5M
ms-dotnettools

Extension Pack for Java
20.4M
vscjava

Go
10.0M
golang

https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack
https://marketplace.visualstudio.com/items?itemName=golang.Go
https://marketplace.visualstudio.com/items?itemName=golang.Go
https://marketplace.visualstudio.com/items?itemName=golang.Go
https://marketplace.visualstudio.com/items?itemName=golang.Go
https://marketplace.visualstudio.com/items?itemName=golang.Go
https://marketplace.visualstudio.com/items?itemName=golang.Go
https://marketplace.visualstudio.com/items?itemName=Dart-Code.dart-code
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack
https://marketplace.visualstudio.com/items?itemName=golang.Go

Dart
7.1M
Dart-Code

PHP Extension Pack
4.2M
xdebug

https://marketplace.visualstudio.com/items?itemName=Dart-Code.dart-code
https://marketplace.visualstudio.com/items?itemName=Dart-Code.dart-code
https://marketplace.visualstudio.com/items?itemName=Dart-Code.dart-code
https://marketplace.visualstudio.com/items?itemName=Dart-Code.dart-code
https://marketplace.visualstudio.com/items?itemName=xdebug.php-pack
https://marketplace.visualstudio.com/items?itemName=xdebug.php-pack
https://marketplace.visualstudio.com/items?itemName=xdebug.php-pack
https://marketplace.visualstudio.com/items?itemName=xdebug.php-pack
https://marketplace.visualstudio.com/items?itemName=xdebug.php-pack
https://marketplace.visualstudio.com/items?itemName=xdebug.php-pack
https://marketplace.visualstudio.com/items?itemName=Shopify.ruby-lsp
https://marketplace.visualstudio.com/items?itemName=Dart-Code.dart-code
https://marketplace.visualstudio.com/items?itemName=xdebug.php-pack

Ruby LSP
162.7K
Shopify

IntelliSense features
VS Code IntelliSense features are powered by a language service. A language service provides
intelligent code completions based on language semantics and an analysis of your source code. If a
language service knows possible completions, the IntelliSense suggestions will pop up as you type. If
you continue typing characters, the list of members (variables, methods, etc.) is filtered to only include
members containing your typed characters. Pressing Tab or Enter will insert the selected member.

You can trigger IntelliSense in any editor window by typing Ctrl+Space or by typing a trigger
character (such as the dot character (.) in JavaScript).

https://marketplace.visualstudio.com/items?itemName=Shopify.ruby-lsp
https://marketplace.visualstudio.com/items?itemName=Shopify.ruby-lsp
https://marketplace.visualstudio.com/items?itemName=Shopify.ruby-lsp
https://marketplace.visualstudio.com/items?itemName=Shopify.ruby-lsp
https://code.visualstudio.com/docs/editor/intellisense#_intellisense-features
https://marketplace.visualstudio.com/items?itemName=Shopify.ruby-lsp

Tip: The suggestions widget supports CamelCase filtering, meaning you can type the letters which are
upper cased in a method name to limit the suggestions. For example, "cra" will quickly bring up
"createApplication".

If you prefer, you can turn off IntelliSense while you type. See Customizing IntelliSense below to learn
how to disable or customize VS Code's IntelliSense features.

As provided by the language service, you can see quick info for each method by either
pressing Ctrl+Space or clicking the info icon. The accompanying documentation for the method will
now expand to the side. The expanded documentation will stay so and will update as you navigate the
list. You can close this by pressing Ctrl+Space again or by clicking on the close icon.

After choosing a method you are provided with parameter info.

https://code.visualstudio.com/docs/editor/intellisense#_customizing-intellisense

When applicable, a language service will surface the underlying types in the quick info and method
signatures. In the image above, you can see several any types. Because JavaScript is dynamic and
doesn't need or enforce types, any suggests that the variable can be of any type.

Types of completions
The JavaScript code below illustrates IntelliSense completions. IntelliSense gives both inferred
proposals and the global identifiers of the project. The inferred symbols are presented first, followed
by the global identifiers (shown by the Word icon).

https://code.visualstudio.com/docs/editor/intellisense#_types-of-completions

VS Code IntelliSense offers different types of completions, including language server suggestions,
snippets, and simple word based textual completions.

Icon Name Symbol type

Methods and Functions method, function, constructor

Variables variable

Fields field

Type parameters typeParameter

Icon Name Symbol type

Constants constant

Classes class

Interfaces interface

Structures struct

Events event

Operators operator

Modules module

Properties and Attributes property

Values and Enumerations value, enum

References reference

Keywords keyword

Files file

Folders folder

Icon Name Symbol type

Colors color

Unit unit

Snippet prefixes snippet

Words text

Customizing IntelliSense
You can customize your IntelliSense experience in settings and key bindings.

Settings

The settings shown below are the default settings. You can change these settings in
your settings.json file as described in User and Workspace Settings.

{

 // Controls if quick suggestions should show up while typing

 "editor.quickSuggestions": {

 "other": true,

 "comments": false,

 "strings": false

 },

 // Controls whether suggestions should be accepted on commit characters. For example, in Java
Script, the semi-colon (`;`) can be a commit character that accepts a suggestion and types that ch
aracter.

 "editor.acceptSuggestionOnCommitCharacter": true,

https://code.visualstudio.com/docs/editor/intellisense#_customizing-intellisense
https://code.visualstudio.com/docs/editor/intellisense#_settings
https://code.visualstudio.com/docs/getstarted/settings

 // Controls if suggestions should be accepted on 'Enter' - in addition to 'Tab'. Helps to avoi
d ambiguity between inserting new lines or accepting suggestions. The value 'smart' means only acc
ept a suggestion with Enter when it makes a textual change

 "editor.acceptSuggestionOnEnter": "on",

 // Controls the delay in ms after which quick suggestions will show up.

 "editor.quickSuggestionsDelay": 10,

 // Controls if suggestions should automatically show up when typing trigger characters

 "editor.suggestOnTriggerCharacters": true,

 // Controls if pressing tab inserts the best suggestion and if tab cycles through other sugges
tions

 "editor.tabCompletion": "off",

 // Controls whether sorting favours words that appear close to the cursor

 "editor.suggest.localityBonus": true,

 // Controls how suggestions are pre-selected when showing the suggest list

 "editor.suggestSelection": "first",

 // Enable word based suggestions

 "editor.wordBasedSuggestions": true,

 // Enable parameter hints

 "editor.parameterHints.enabled": true,

}

Tab Completion

The editor supports "tab completion" which inserts the best matching completion when pressing Tab.
This works regardless of the suggest widget showing or not. Also, pressing Tab after inserting a
suggestions will insert the next best suggestion.

https://code.visualstudio.com/docs/editor/intellisense#_tab-completion

By default, tab completion is disabled. Use the editor.tabCompletion setting to enable it. These
values exist:

• off - (default) Tab completion is disabled.
• on - Tab completion is enabled for all suggestions and repeated invocations insert the next

best suggestion.
• onlySnippets - Tab completion only inserts static snippets which prefix match the current line

prefix.

Locality Bonus

Sorting of suggestions depends on extension information and on how well they match the current
word you are typing. In addition, you can ask the editor to boost suggestions that appear closer to
the cursor position, using the editor.suggest.localityBonus setting.

https://code.visualstudio.com/docs/editor/intellisense#_locality-bonus

In above images you can see that count, context, and colocated are sorted based on the scopes in
which they appear (loop, function, file).

Suggestion selection

By default, VS Code pre-selects the first suggestion in the suggestion list. If you'd like different
behavior, for example, to always select the most recently used item in the suggestion list, you can use
the editor.suggestSelection setting.

The available editor.suggestSelection values are:

• first - (default) Always select the top list item.
• recentlyUsed - The previously used item is selected unless a prefix (type to select) selects a

different item.
• recentlyUsedByPrefix - Select items based on previous prefixes that have completed those

suggestions.

Selecting the most recently used item is very useful as you can quickly insert the same completion
multiple times.

https://code.visualstudio.com/docs/editor/intellisense#_suggestion-selection

"Type to select" means that the current prefix (roughly the text left of the cursor) is used to filter and
sort suggestions. When this happens and when its result differs from the result of recentlyUsed, it will
be given precedence.

When using the last option, recentlyUsedByPrefix, VS Code remembers which item was selected for
a specific prefix (partial text). For example, if you typed co and then selected console, the next time
you typed co, the suggestion console would be pre-selected. This lets you quickly map various
prefixes to different suggestions, for example co -> console and con -> const.

Snippets in suggestions

By default, VS Code shows snippets and completion proposals in one widget. You can control the
behavior with the editor.snippetSuggestions setting. To remove snippets from the suggestions
widget, set the value to "none". If you'd like to see snippets, you can specify the order relative to
suggestions; at the top ("top"), at the bottom ("bottom"), or inline ordered alphabetically ("inline").
The default is "inline".

Key bindings

The key bindings shown below are the default key bindings. You can change these in
your keybindings.json file as described in Key Bindings.

Note: There are many more key bindings relating to IntelliSense. Open the Default Keyboard
Shortcuts (File > Preferences > Keyboard Shortcuts) and search for "suggest".

[

 {

 "key": "ctrl+space",

 "command": "editor.action.triggerSuggest",

 "when": "editorHasCompletionItemProvider && editorTextFocus && !editorReadonly"

 },

 {

 "key": "ctrl+space",

 "command": "toggleSuggestionDetails",

 "when": "editorTextFocus && suggestWidgetVisible"

 },

 {

 "key": "ctrl+alt+space",

 "command": "toggleSuggestionFocus",

 "when": "editorTextFocus && suggestWidgetVisible"

https://code.visualstudio.com/docs/editor/intellisense#_snippets-in-suggestions
https://code.visualstudio.com/docs/editor/intellisense#_key-bindings
https://code.visualstudio.com/docs/getstarted/keybindings

 }

]

Enhance completions with AI
In VS Code, you can enhance your coding with artificial intelligence (AI), such as suggestions for lines
of code or entire functions, fast documentation creation, and help creating code-related artifacts like
tests.

GitHub Copilot is an AI-powered code completion tool that helps you write code faster and smarter.
You can use the GitHub Copilot extension in VS Code to generate code, or to learn from the code it
generates.

You can learn more about how to get started with Copilot in the Copilot documentation.

Troubleshooting
If you find IntelliSense has stopped working, the language service may not be running. Try restarting
VS Code and this should solve the issue. If you are still missing IntelliSense features after installing a
language extension, open an issue in the repository of the language extension.

Tip: For configuring and troubleshooting JavaScript IntelliSense, see the JavaScript documentation.

A particular language extension may not support all the VS Code IntelliSense features. Review the
extension's README to find out what is supported. If you think there are issues with a language
extension, you can usually find the issue repository for an extension through the VS Code
Marketplace. Navigate to the extension's Details page and select the Support link.

Next steps
IntelliSense is just one of VS Code's powerful features. Read on to learn more:

• JavaScript - Get the most out of your JavaScript development, including configuring
IntelliSense.

• Node.js - See an example of IntelliSense in action in the Node.js walkthrough.
• Debugging - Learn how to set up debugging for your application.

https://code.visualstudio.com/docs/editor/intellisense#_enhance-completions-with-ai
https://copilot.github.com/
https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
https://code.visualstudio.com/docs/editor/artificial-intelligence
https://code.visualstudio.com/docs/editor/intellisense#_troubleshooting
https://code.visualstudio.com/docs/languages/javascript#_intellisense
https://marketplace.visualstudio.com/vscode
https://marketplace.visualstudio.com/vscode
https://code.visualstudio.com/docs/editor/intellisense#_next-steps
https://code.visualstudio.com/docs/languages/javascript
https://code.visualstudio.com/docs/nodejs/nodejs-tutorial
https://code.visualstudio.com/docs/editor/debugging

• Creating Language extensions - Learn how to create extensions that add IntelliSense for new
programming languages.

• Artificial Intelligence - Learn how to use AI with GitHub Copilot to enhance your coding.

Common questions

Why am I not getting any suggestions?

This can be caused by a variety of reasons. First, try restarting VS Code. If the problem persists,
consult the language extension's documentation. For JavaScript specific troubleshooting, please see
the JavaScript language topic.

Why am I not seeing method and variable suggestions?

This issue is caused by missing type declaration (typings) files in JavaScript. You can check if a type
declaration file package is available for a specific library by using the TypeSearch site. There is more

https://code.visualstudio.com/api/language-extensions/programmatic-language-features
https://code.visualstudio.com/docs/editor/artificial-intelligence
https://code.visualstudio.com/docs/editor/intellisense#_common-questions
https://code.visualstudio.com/docs/editor/intellisense#_why-am-i-not-getting-any-suggestions
https://code.visualstudio.com/docs/languages/javascript#_intellisense
https://code.visualstudio.com/docs/editor/intellisense#_why-am-i-not-seeing-method-and-variable-suggestions
https://microsoft.github.io/TypeSearch

information about this issue in the JavaScript language topic. For other languages, please consult the
extension's documentation.

https://code.visualstudio.com/docs/languages/javascript#_intellisense

Code Navigation
Visual Studio Code has a high productivity code editor which, when combined with programming
language services, gives you the power of an IDE and the speed of a text editor. In this topic, we'll first
describe VS Code's language intelligence features (suggestions, parameter hints, smart code
navigation) and then show the power of the core text editor.

Quick file navigation
Tip: You can open any file by its name when you type Ctrl+P (Quick Open).

The Explorer is great for navigating between files when you are exploring a project. However, when
you are working on a task, you will find yourself quickly jumping between the same set of files. VS
Code provides two powerful commands to navigate in and across files with easy-to-use key bindings.

Hold Ctrl and press Tab to view a list of all files open in an editor group. To open one of these files,
use Tab again to pick the file you want to navigate to, then release Ctrl to open it.

Alternatively, you can use Alt+Left and Alt+Right to navigate between files and edit locations. If you
are jumping around between different lines of the same file, these shortcuts allow you to navigate
between those locations easily.

Breadcrumbs
The editor has a navigation bar above its contents called Breadcrumbs. It shows the current location
and allows you to quickly navigate between folders, files, and symbols.

https://code.visualstudio.com/docs/editor/editingevolved#_quick-file-navigation
https://code.visualstudio.com/docs/editor/editingevolved#_breadcrumbs
https://en.wikipedia.org/wiki/Breadcrumb_(navigation)

Breadcrumbs always show the file path and, with the help of language extensions, the symbol path up
to the cursor position. The symbols shown are the same as in Outline view and Go to Symbol.

Selecting a breadcrumb in the path displays a dropdown with that level's siblings so you can quickly
navigate to other folders and files.

If the current file type has language support for symbols, you will see the current symbol path and a
dropdown of other symbols at the same level and below.

You can turn off breadcrumbs with the View > Show Breadcrumbs toggle or with
the breadcrumbs.enabled setting.

Breadcrumb customization

The appearance of breadcrumbs can be customized. If you have very long paths or are only interested
in either file paths or symbols paths, you can use
the breadcrumbs.filePath and breadcrumbs.symbolPath settings. Both support on, off, and last and
they define if or what part of the path you see. By default, breadcrumbs show file and symbol icons to
the left of the breadcrumb but you can remove the icons by setting breadcrumbs.icons to false.

Symbol order in Breadcrumbs

You can control how symbols are ordered in the Breadcrumbs dropdown with
the breadcrumbs.symbolSortOrder settings.

Allowed values are:

• position - position in the file (default)
• name - alphabetical order
• type - symbol type order

Breadcrumb keyboard navigation

To interact with breadcrumbs, use the Focus Breadcrumbs command or press Ctrl+Shift+.. It will
select that last element and open a dropdown that allows you to navigate to a sibling file or symbol.
Use the Left and Right keyboard shortcuts to go to elements before or after the current element.
When the dropdown appears, start typing - all matching elements will be highlighted and the best
match will be selected for quick navigation.

https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/editor/editingevolved#_breadcrumb-customization
https://code.visualstudio.com/docs/editor/editingevolved#_symbol-order-in-breadcrumbs
https://code.visualstudio.com/docs/editor/editingevolved#_breadcrumb-keyboard-navigation

You can also interact with breadcrumbs without the dropdown. Press Ctrl+Shift+; to focus the last
element, use Left and Right to navigate, and use Space to reveal the element in the editor.

Go to Definition
If a language supports it, you can go to the definition of a symbol by pressing F12.

If you press Ctrl and hover over a symbol, a preview of the declaration will appear:

Tip: You can jump to the definition with Ctrl+Click or open the definition to the side
with Ctrl+Alt+Click.

Go to Type Definition
Some languages also support jumping to the type definition of a symbol by running the Go to Type
Definition command from either the editor context menu or the Command Palette. This will take
you to the definition of the type of a symbol. The command editor.action.goToTypeDefinition is
not bound to a keyboard shortcut by default but you can add your own custom keybinding.

Go to Implementation
Languages can also support jumping to the implementation of a symbol by pressing Ctrl+F12. For an
interface, this shows all the implementors of that interface and for abstract methods, this shows all
concrete implementations of that method.

Go to Symbol
You can navigate symbols inside a file with Ctrl+Shift+O. By typing : the symbols will be grouped by
category. Press Up or Down and navigate to the place you want.

https://code.visualstudio.com/docs/editor/editingevolved#_go-to-definition
https://code.visualstudio.com/docs/languages/overview
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-type-definition
https://code.visualstudio.com/docs/languages/overview
https://code.visualstudio.com/docs/getstarted/keybindings
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-implementation
https://code.visualstudio.com/docs/languages/overview
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-symbol

Open symbol by name
Some languages support jumping to a symbol across files with Ctrl+T. Type the first letter of a type
you want to navigate to, regardless of which file contains it, and press Enter.

Peek

https://code.visualstudio.com/docs/editor/editingevolved#_open-symbol-by-name
https://code.visualstudio.com/docs/editor/editingevolved#_peek

We think there's nothing worse than a big context switch when all you want is to quickly check
something. That's why we support peeked editors. When you execute a Go to References search
(via Shift+F12), or a Peek Definition (via Alt+F12), we embed the result inline:

You can navigate between different references in the peeked editor and make quick edits right there.
Clicking on the peeked editor filename or double-clicking in the result list will open the reference in
the outer editor.

Tip: Additionally, the peek window is closed if you press Escape or double-click in the peek editor
region. You can disable this behavior with the editor.stablePeek setting.

Bracket matching
Matching brackets will be highlighted as soon as the cursor is near one of them.

Tip: You can jump to the matching bracket with Ctrl+Shift+\

Bracket Pair Colorization

Matching bracket pairs can also be colorized by
setting editor.bracketPairColorization.enabled to true.

https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/editor/editingevolved#_bracket-matching
https://code.visualstudio.com/docs/editor/editingevolved#_bracket-pair-colorization

All colors are themeable and up to six colors can be configured.

You can use workbench.colorCustomizations to override these theme-contributed colors in your
settings:

"workbench.colorCustomizations": {

 "editorBracketHighlight.foreground1": "#FFD700",

 "editorBracketHighlight.foreground2": "#DA70D6",

 "editorBracketHighlight.foreground3": "#179fff",

},

Reference information
Some languages like C# support inline reference information, that is updated live. This allows you to
quickly analyze the impact of your edit or the popularity of your specific method or property
throughout your project:

https://code.visualstudio.com/docs/editor/editingevolved#_reference-information

Tip: Directly invoke the Peek References action by clicking on these annotations.

Tip: Reference information shown in CodeLens can be turned on or off through
the editor.codeLens setting.

Rename symbol
Some languages support rename symbol across files. Press F2 and then type the new desired name
and press Enter. All usages of the symbol will be renamed, across files.

Errors & warnings
Warnings or Errors can be generated either via configured tasks, by rich language services, or by
linters, that constantly analyze your code in the background. Since we love bug-free code, warnings
and errors show up in multiple places:

https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/editor/editingevolved#_rename-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_errors-warnings
https://code.visualstudio.com/docs/editor/tasks

• In the Status Bar, there is a summary of all errors and warnings counts.
• You can click on the summary or press Ctrl+Shift+M to display the PROBLEMS panel with a

list of all current errors.
• If you open a file that has errors or warnings, they will be rendered inline with the text and in

the overview ruler.

Tip: To loop through errors or warnings in the current file, you can press F8 or Shift+F8 which will
show an inline zone detailing the problem and possible Code Actions (if available):

Code Action
Warnings and Errors can provide Code Actions (also known as Quick Fixes) to help fix issues. These
will be displayed in the editor in the left margin as a lightbulb. Clicking on the lightbulb will either
display the Code Action options or perform the action.

Inlay Hints
Some languages provide inlay hints: that is additional information about source code that is rendered
inline. This is usually used to show infered types. The sample below shows inlay hints that display the
inferred types of JavaScript variables and function return types.

Inlay hints can be enabled/disabled with the editor.inlayHints.enabled setting, the default is
enabled. Extensions, like TypeScript or Rust, are needed to provide the actual inlay hint information.

Outgoing link protection

https://code.visualstudio.com/docs/editor/editingevolved#_code-action
https://code.visualstudio.com/docs/editor/editingevolved#_inlay-hints
https://code.visualstudio.com/docs/editor/editingevolved#_outgoing-link-protection

For your protection, VS Code displays a prompt before opening an outgoing website link from the
editor.

You can proceed to the external website in your browser or have the options to copy the link or
cancel the request. If you choose Configure Trusted Domains, a dropdown lets you trust the exact
URL, trust the URL domain and subdomains, or trust all domains to disable outgoing link protection.

The option to Manage Trusted Domains, also available at any time from the Command Palette,
brings up the Trusted Domains JSON file, where you can add, remove, or modify trusted domains.

// You can use the "Manage Trusted Domains" command to open this file.

// Save this file to apply the trusted domains rules.

[

 "*.twitter.com"

]

The Trusted Domains JSON file also has comments with examples of the supported domain formats
and a list of the domains trusted by default, such
as https://*.visualstudio.com and https://*.microsoft.com.

Next steps
Now that you know how the editor works, time to try a few other things...

• Intro Video - Code Editing - Watch an introductory video on code editing features.
• User Interface - In case you missed a basic orientation around VS Code.
• Key Bindings - Learn how to modify key bindings to your preference.
• Debugging - This is where VS Code really shines.

https://code.visualstudio.com/docs/editor/editingevolved#_next-steps
https://code.visualstudio.com/docs/introvideos/codeediting
https://code.visualstudio.com/docs/getstarted/userinterface
https://code.visualstudio.com/docs/getstarted/keybindings
https://code.visualstudio.com/docs/editor/debugging

Common questions

How can I automatically select the second entry in Quick Open instead of the first?

With the command workbench.action.quickOpenPreviousEditor, you can have the second entry
automatically selected in Quick Open. This can be useful if you want to select the previous entry from
the list without having to invoke another keybinding:

[

 {

 "key": "ctrl+p",

 "command": "workbench.action.quickOpenPreviousEditor"

 },

 {

 "key": "ctrl+p",

 "command": "-workbench.action.quickOpen"

 }

]

How can I configure Ctrl+Tab to navigate across all editors of all groups

By default, Ctrl+Tab navigates between editors of the same editor group. If you want to navigate
across all opened editors in all groups, you can create keyboard shortcuts for
the workbench.action.quickOpenPreviousRecentlyUsedEditor and workbench.action.quickOpenLea
stRecentlyUsedEditor commands:

[

 {

 "key": "ctrl+tab",

 "command": "workbench.action.quickOpenPreviousRecentlyUsedEditor",

 "when": "!inEditorsPicker"

 },

 {

 "key": "ctrl+shift+tab",

 "command": "workbench.action.quickOpenLeastRecentlyUsedEditor",

 "when": "!inEditorsPicker"

https://code.visualstudio.com/docs/editor/editingevolved#_common-questions
https://code.visualstudio.com/docs/editor/editingevolved#_how-can-i-automatically-select-the-second-entry-in-quick-open-instead-of-the-first
https://code.visualstudio.com/docs/editor/editingevolved#_how-can-i-configure-ctrltab-to-navigate-across-all-editors-of-all-groups

 }

]

How can I navigate between recently used editors without a picker

Here is a list of commands you can use to navigate in editors without opening a picker:

Key Command Command ID

unassigned Open Next Recently Used
Editor

workbench.action.openNextRecentlyUsedEditor

unassigned Open Previously Used
Editor

workbench.action.openPreviousRecentlyUsedEditor

unassigned Open Next Recently Used
Editor in Group

workbench.action.openNextRecentlyUsedEditorInGroup

unassigned Open Previously Used
Editor in Group

workbench.action.openPreviousRecentlyUsedEditorInGroup

https://code.visualstudio.com/docs/editor/editingevolved#_how-can-i-navigate-between-recently-used-editors-without-a-picker

Refactoring
Source code refactoring can improve the quality and maintainability of your project by restructuring
your code while not modifying the runtime behavior. Visual Studio Code supports refactoring
operations (refactorings) such as Extract Method and Extract Variable to improve your code base from
within your editor.

For example, a common refactoring used to avoid duplicating code (a maintenance headache) is
the Extract Method refactoring, where you select source code that you'd like to reuse elsewhere and
pull it out into its own shared method.

Refactorings are provided by a language service and VS Code has built-in support for TypeScript and
JavaScript refactoring through the TypeScript language service. Refactoring support for other
programming languages is provided through VS Code extensions that contribute language services.
The UI and commands for refactoring are the same across languages, and in this topic we'll
demonstrate refactoring support with the TypeScript language service.

Code Actions = Quick Fixes and refactorings
In VS Code, Code Actions can provide both refactorings and Quick Fixes for detected issues
(highlighted with green squiggles). An available Code Action is announced by a lightbulb near the
source code when the cursor is on a squiggle or selected text region. Clicking on the Code Action
lightbulb or using the Quick Fix command Ctrl+. will display Quick Fixes and refactorings.

If you'd just like to see refactorings without Quick Fixes, you can use the Refactor command
(Ctrl+Shift+R).

Note: If you prefer to not see the Code Action lightbulb in your editor, you can disable lightbulbs
with the editor.lightbulb.enable setting. You can still open Quick Fixes through Quick
Fix command and Ctrl+. keyboard shortcut.

https://en.wikipedia.org/wiki/Code_refactoring
https://refactoring.com/catalog/extractMethod.html
https://refactoring.com/catalog/extractVariable.html
https://refactoring.com/catalog/extractMethod.html
https://www.typescriptlang.org/
https://code.visualstudio.com/docs/editor/extension-marketplace
https://code.visualstudio.com/docs/editor/refactoring#_code-actions-quick-fixes-and-refactorings
https://code.visualstudio.com/docs/getstarted/settings

Refactoring actions

Extract Method

Select the source code you'd like to extract and then click on the lightbulb in the gutter or press
(Ctrl+.) to see available refactorings. Source code fragments can be extracted into a new method, or
into a new function at various different scopes. During the extract refactoring, you will be prompted
to provide a meaningful name.

Extract Variable

TypeScript language service provides Extract to const refactoring to create a new local variable for
the currently selected expression:

When working with classes, you can also extract a value to a new property.

Rename symbol
Renaming is a common operation related to refactoring source code and VS Code has a
separate Rename Symbol command (F2). Some languages support rename symbol across files.
Press F2 and then type the new desired name and press Enter. All usages of the symbol will be
renamed, across files.

https://code.visualstudio.com/docs/editor/refactoring#_refactoring-actions
https://code.visualstudio.com/docs/editor/refactoring#_extract-method
https://code.visualstudio.com/docs/editor/refactoring#_extract-variable
https://code.visualstudio.com/docs/editor/refactoring#_rename-symbol

Keybindings for Code Actions
The editor.action.codeAction command lets you configure keybindings for specific Code Actions.
This keybinding, for example, triggers the Extract function refactoring Code Actions:

{

 "key": "ctrl+shift+r ctrl+e",

 "command": "editor.action.codeAction",

 "args": {

 "kind": "refactor.extract.function"

 }

}

Code Action kinds are specified by extensions using the enhanced CodeActionProvided API. Kinds are
hierarchical, so "kind": "refactor" will show all refactoring Code Actions, whereas "kind":
"refactor.extract.function" will only show Extract function refactorings.

Using the above keybinding, if only a single "refactor.extract.function" Code Action is available, it
will be automatically applied. If multiple Extract function Code Actions are available, we bring up a
context menu to select them:

https://code.visualstudio.com/docs/editor/refactoring#_keybindings-for-code-actions

You can also control how/when Code Actions are automatically applied using the apply argument:

{

 "key": "ctrl+shift+r ctrl+e",

 "command": "editor.action.codeAction",

 "args": {

 "kind": "refactor.extract.function",

 "apply": "first"

 }

}

Valid values for "apply":

• "first" - Always automatically apply the first available Code Action.
• "ifSingle" - Default. Automatically apply the Code Action if only one is available. Otherwise,

show the context menu.
• "never" - Always show the Code Action context menu, even if only a single Code Action is

available.

When a Code Action keybinding is configured with "preferred": true, only preferred Quick Fixes
and refactorings are shown. A preferred Quick Fix addresses the underlying error, while a preferred
refactoring is the most common refactoring choice. For example, while
multiple refactor.extract.constant refactorings may exist, each extracting to a different scope in
the file, the preferred refactor.extract.constant refactoring is the one that extracts to a local
variable.

This keybinding uses "preferred": true to create a refactoring that always tries to extract the
selected source code to a constant in the local scope:

{

 "key": "shift+ctrl+e",

 "command": "editor.action.codeAction",

 "args": {

 "kind": "refactor.extract.constant",

 "preferred": true,

 "apply": "ifSingle"

 }

}

Extensions with refactorings
You can find extensions that support refactoring by looking in the VS Code Marketplace. You can go
to the Extensions view (Ctrl+Shift+X) and type 'refactor' in the search box. You can then sort by
install count or ratings to see which extensions are popular.

Python
90.7M
ms-python

Language Support for Java(TM) by Red Hat
25.8M
redhat

https://code.visualstudio.com/docs/editor/refactoring#_extensions-with-refactorings
https://marketplace.visualstudio.com/vscode
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=GitHub.copilot

GitHub Copilot
7.3M
GitHub

PHP IntelliSense
5.8M
felixfbecker

Tip: The extensions shown above are dynamically queried. Click on an extension tile above to read the
description and reviews to decide which extension is best for you.

Next steps
• Intro Video - Code Editing - Watch an introductory video on code editing features.
• Code Navigation - VS Code lets you move quickly through your source code.
• Debugging - Learn about debugging with VS Code.

Common questions

Why don't I see any lightbulbs when there are errors in my code?

Lightbulbs (Code Actions) are only shown when your cursor hovers over the text showing the error.
Hovering over the text will show the error description, but you need to move the cursor or select text
to see lightbulbs for Quick Fixes and refactorings.

https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
https://marketplace.visualstudio.com/items?itemName=felixfbecker.php-intellisense
https://marketplace.visualstudio.com/items?itemName=felixfbecker.php-intellisense
https://marketplace.visualstudio.com/items?itemName=felixfbecker.php-intellisense
https://marketplace.visualstudio.com/items?itemName=felixfbecker.php-intellisense
https://marketplace.visualstudio.com/items?itemName=felixfbecker.php-intellisense
https://marketplace.visualstudio.com/items?itemName=felixfbecker.php-intellisense
https://code.visualstudio.com/docs/editor/refactoring#_next-steps
https://code.visualstudio.com/docs/introvideos/codeediting
https://code.visualstudio.com/docs/editor/editingevolved
https://code.visualstudio.com/docs/editor/debugging
https://code.visualstudio.com/docs/editor/refactoring#_common-questions
https://code.visualstudio.com/docs/editor/refactoring#_why-dont-i-see-any-lightbulbs-when-there-are-errors-in-my-code
https://marketplace.visualstudio.com/items?itemName=felixfbecker.php-intellisense

AI Tools in VS Code
The GitHub Copilot extension is an AI pair programmer tool that helps you write code faster and
smarter. You can use the Copilot extension in VS Code to generate code, learn from the code it
generates, and even configure your editor.

Prerequisites
You'll use the GitHub Copilot extension to power your AI suggestions in VS Code.

Install the Copilot extension

To use GitHub Copilot, you need an active GitHub Copilot subscription. In the content below, you'll
learn how VS Code will help you activate your free trial directly from VS Code. You can also activate
your trial starting from the GitHub Copilot signup page.

Note: For some of the latest features we'll explore below, you'll need to use the pre-release version of
the GitHub Copilot extension, which will provide you the latest updates in Copilot.

Sign in and sign up
If you have not previously authorized VS Code in your GitHub account, you will be prompted to sign
in to GitHub in VS Code:

https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
https://code.visualstudio.com/docs/editor/artificial-intelligence#_prerequisites
https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
vscode:extension/GitHub.copilot
https://code.visualstudio.com/docs/editor/artificial-intelligence#_activate-your-free-trial
https://github.com/github-copilot/signup
https://code.visualstudio.com/updates/v1_63#_pre-release-extensions
https://code.visualstudio.com/docs/editor/artificial-intelligence#_sign-in-and-sign-up

In your browser, GitHub will request the necessary permissions for GitHub Copilot. To approve these
permissions, select Authorize Visual Studio Code.

Activate your free trial

If you haven't yet activated your free trial for Copilot, the extension will notify you in VS Code.
Select Signup for GitHub Copilot to activate your trial.

You can learn more about billing for Copilot in the GitHub Copilot documentation.

Using Copilot
Now that you've signed up for Copilot and activated the extension, let's see its assistance in action!

GitHub Copilot provides suggestions for numerous languages and a wide variety of frameworks, and
it works especially well for Python, JavaScript, TypeScript, Ruby, Go, C# and C++.

There are three main ways to get assistance from Copilot:

• Inline suggestions: Harness Copilot's help automatically through suggestions it provides
directly inline as you work in your code.

• Chat view: Ask Copilot for help with any task or question in the GitHub Copilot Chat view.
• Inline chat: Talk with Copilot while writing code, inline in your files.

https://code.visualstudio.com/docs/editor/artificial-intelligence#_activate-your-free-trial
https://docs.github.com/billing/managing-billing-for-github-copilot/about-billing-for-github-copilot
https://code.visualstudio.com/docs/editor/artificial-intelligence#_using-copilot

Note: To get access to the chat view and inline chat, you'll need to sign up for the GitHub Copilot
chat waitlist. You'll also need to use pre-release version of the GitHub Copilot extension.

Inline suggestions
Copilot presents suggestions automatically to help you code more efficiently. There are just 3 steps to
harnessing these suggestions:

1. Start writing code (or code-related items, like comments or tests).

Copilot provides suggestions for a variety of languages and frameworks. For any given input, Copilot
may offer multiple suggestions. You can select which suggestion to use or reject all suggestions.

2. Receive a Copilot suggestion in gray ghost (faded) text.

Ghost text is placeholder text that will be replaced by input you type or select from Copilot.

As an example, a JavaScript file, you can type the following function header:

function calculateDaysBetweenDates(begin, end) {

Copilot will provide a suggestion like the following:

3. Choose to accept Copilot's suggestion.

For any given input, Copilot may offer multiple suggestions. When Copilot offers a suggestion, you
can use accept it with the Tab key, or hover over the suggestion to see the inline suggestion toolbar:

https://github.com/github-copilot/chat_waitlist_signup/join
https://github.com/github-copilot/chat_waitlist_signup/join
https://code.visualstudio.com/updates/v1_63#_pre-release-extensions
https://code.visualstudio.com/docs/editor/artificial-intelligence#_inline-suggestions

In the image above, Copilot presents three suggestions. You can accept the entire suggestion
with Tab, or only part of the suggestion with Ctrl+RightArrow. You can switch between suggestions in
the suggestion toolbar, or use the keyboard shortcut Alt+] instead.

If you don't want to accept any of the suggestions, you can continue typing, and Copilot will continue
providing suggestions as you work.

Chat view
When developing a project or learning something new, it can be a big help to get AI assistance on
your questions, big or small. Copilot enables an interactive Chat experience that understands the
context of your code, workspace, extensions, settings, and more.

Once you've signed up and been granted access to Copilot chat through the chat waitlist, install
the pre-release version of the GitHub Copilot extension in VS Code. You'll be presented a new GitHub
Copilot chat view in the Activity Bar:

https://code.visualstudio.com/docs/editor/artificial-intelligence#_chat-view
https://github.com/github-copilot/chat_waitlist_signup/join
https://code.visualstudio.com/updates/v1_63#_pre-release-extensions

Like other views in VS Code, you can move it anywhere. For example, you can move it to the
secondary sidebar so that you can use other views like the Explorer at the same time:

Copilot will suggest potential questions to get started. You can select any of these questions or use
the chat box to type your own:

As you continue asking questions, Copilot maintains the history of your conversation, and it'll provide
related follow-up questions or commands in its response too.

You can help Copilot provide better answers by upvoting or downvoting responses with the thumbs
up and down icons in the upper right of its response. This provides Copilot feedback on how much it
helped with your scenario so that it can help you even better in the future.

Slash commands

To further help Copilot give you more relevant answers, you can choose a topic for your questions
through "slash commands."

You can prepend your chat inputs with a specific topic name to help Copilot give you a more relevant
response. When you start typing /, you’ll see the list of possible topics:

• /explain: Explain step-by-step how the selected code works.
• /fix: Propose a fix for the bugs in the selected code.
• /help: Prints general help about GitHub Copilot.
• /tests: Generate unit tests for the selected code.
• /vscode: Questions about VS Code commands and settings.
• /clear: Clear the session.

https://code.visualstudio.com/docs/editor/artificial-intelligence#_slash-commands

Inline chat
An additional key functionality of Copilot is answering questions inline as you're coding. This allows
you to harness the power of AI while staying in your existing editor workflow.

In any file, you can press Ctrl+I on your keyboard to bring up Copilot inline chat:

https://code.visualstudio.com/docs/editor/artificial-intelligence#_inline-chat

You can ask Copilot questions that emerge as you write and iterate on code, such as "Explain this
piece of code" or "How do I add functionality to do X?" Several slash commands also work in inline
chat.

Additional resources
Congratulations, you've now used artificial intelligence to enhance your coding!

You can read more about Copilot and how to use it in VS Code in the GitHub Copilot documentation.

https://code.visualstudio.com/docs/editor/artificial-intelligence#_slash-commands
https://code.visualstudio.com/docs/editor/artificial-intelligence#_additional-resources
https://docs.github.com/copilot/getting-started-with-github-copilot/getting-started-with-github-copilot-in-visual-studio-code

Debugging
One of the key features of Visual Studio Code is its great debugging support. VS Code's built-in
debugger helps accelerate your edit, compile, and debug loop.

Debugger extensions
VS Code has built-in debugging support for the Node.js runtime and can debug JavaScript,
TypeScript, or any other language that gets transpiled to JavaScript.

For debugging other languages and runtimes
(including PHP, Ruby, Go, C#, Python, C++, PowerShell and many others), look
for Debuggers extensions in the VS Code Marketplace or select Install Additional Debuggers in the
top-level Run menu.

Below are several popular extensions which include debugging support:

https://code.visualstudio.com/docs/editor/debugging#_debugger-extensions
https://nodejs.org/
https://marketplace.visualstudio.com/items?itemName=xdebug.php-debug
https://marketplace.visualstudio.com/items?itemName=rebornix.Ruby
https://marketplace.visualstudio.com/items?itemName=golang.go
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell
https://marketplace.visualstudio.com/search?term=debug&target=VSCode&category=Debuggers&sortBy=Relevance
https://code.visualstudio.com/docs/editor/extension-marketplace
https://marketplace.visualstudio.com/vscode/Debuggers
https://marketplace.visualstudio.com/items?itemName=ms-python.python

Python
90.7M
ms-python

C/C++
49.1M
ms-vscode

Debugger for Java
23.3M
vscjava

C#
22.5M
ms-dotnettools

https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp

Tip: The extensions shown above are dynamically queried. Select an extension tile above to read the
description and reviews to decide which extension is best for you.

Start debugging
The following documentation is based on the built-in Node.js debugger, but most of the concepts
and features are applicable to other debuggers as well.

It is helpful to first create a sample Node.js application before reading about debugging. You can
follow the Node.js walkthrough to install Node.js and create a simple "Hello World" JavaScript
application (app.js). Once you have a simple application set up, this page will take you through VS
Code debugging features.

Run and Debug view
To bring up the Run and Debug view, select the Run and Debug icon in the Activity Bar on the side
of VS Code. You can also use the keyboard shortcut Ctrl+Shift+D.

The Run and Debug view displays all information related to running and debugging and has a top
bar with debugging commands and configuration settings.

https://code.visualstudio.com/docs/editor/debugging#_start-debugging
https://nodejs.org/
https://code.visualstudio.com/docs/nodejs/nodejs-tutorial
https://code.visualstudio.com/docs/editor/debugging#_run-and-debug-view

If running and debugging is not yet configured (no launch.json has been created), VS Code shows
the Run start view.

Run menu
The top-level Run menu has the most common run and debug commands:

https://code.visualstudio.com/docs/editor/debugging#_run-menu

Launch configurations
To run or debug a simple app in VS Code, select Run and Debug on the Debug start view or
press F5 and VS Code will try to run your currently active file.

However, for most debugging scenarios, creating a launch configuration file is beneficial because it
allows you to configure and save debugging setup details. VS Code keeps debugging configuration
information in a launch.json file located in a .vscode folder in your workspace (project root folder) or
in your user settings or workspace settings.

To create a launch.json file, click the create a launch.json file link in the Run start view.

https://code.visualstudio.com/docs/editor/debugging#_launch-configurations
https://code.visualstudio.com/docs/editor/debugging#_global-launch-configuration
https://code.visualstudio.com/docs/editor/multi-root-workspaces#_workspace-launch-configurations

VS Code will try to automatically detect your debug environment, but if this fails, you will have to
choose it manually:

Here is the launch configuration generated for Node.js debugging:

{

 "version": "0.2.0",

 "configurations": [

 {

 "type": "node",

 "request": "launch",

 "name": "Launch Program",

 "skipFiles": ["<node_internals>/**"],

 "program": "${workspaceFolder}\\app.js"

 }

]

}

If you go back to the File Explorer view (Ctrl+Shift+E), you'll see that VS Code has created
a .vscode folder and added the launch.json file to your workspace.

Note: You can debug a simple application even if you don't have a folder open in VS Code, but it is
not possible to manage launch configurations and set up advanced debugging. The VS Code Status
Bar is purple if you do not have a folder open.

Note that the attributes available in launch configurations vary from debugger to debugger. You can
use IntelliSense suggestions (Ctrl+Space) to find out which attributes exist for a specific debugger.
Hover help is also available for all attributes.

Do not assume that an attribute that is available for one debugger automatically works for other
debuggers too. If you see green squiggles in your launch configuration, hover over them to learn
what the problem is and try to fix them before launching a debug session.

Review all automatically generated values and make sure that they make sense for your project and
debugging environment.

Launch versus attach configurations

In VS Code, there are two core debugging modes, Launch and Attach, which handle two different
workflows and segments of developers. Depending on your workflow, it can be confusing to know
what type of configuration is appropriate for your project.

If you come from a browser Developer Tools background, you might not be used to "launching from
your tool," since your browser instance is already open. When you open DevTools, you are
simply attaching DevTools to your open browser tab. On the other hand, if you come from a server
or desktop background, it's quite normal to have your editor launch your process for you, and your
editor automatically attaches its debugger to the newly launched process.

The best way to explain the difference between launch and attach is to think of
a launch configuration as a recipe for how to start your app in debug mode before VS Code attaches
to it, while an attach configuration is a recipe for how to connect VS Code's debugger to an app or
process that's already running.

VS Code debuggers typically support launching a program in debug mode or attaching to an already
running program in debug mode. Depending on the request (attach or launch), different attributes
are required, and VS Code's launch.json validation and suggestions should help with that.

Add a new configuration

https://code.visualstudio.com/docs/editor/debugging#_launch-versus-attach-configurations
https://code.visualstudio.com/docs/editor/debugging#_add-a-new-configuration

To add a new configuration to an existing launch.json, use one of the following techniques:

• Use IntelliSense if your cursor is located inside the configurations array.
• Press the Add Configuration button to invoke snippet IntelliSense at the start of the array.
• Choose Add Configuration option in the Run menu.

VS Code also supports compound launch configurations for starting multiple configurations at the
same time; for more details, please read this section.

In order to start a debug session, first select the configuration named Launch Program using
the Configuration dropdown in the Run and Debug view. Once you have your launch configuration
set, start your debug session with F5.

Alternatively, you can run your configuration through the Command Palette (Ctrl+Shift+P) by
filtering on Debug: Select and Start Debugging or typing 'debug ' and selecting the configuration
you want to debug.

As soon as a debugging session starts, the DEBUG CONSOLE panel is displayed and shows
debugging output, and the Status Bar changes color (orange for default color themes):

https://code.visualstudio.com/docs/editor/debugging#_compound-launch-configurations

In addition, the debug status appears in the Status Bar showing the active debug configuration. By
selecting the debug status, a user can change the active launch configuration and start debugging
without needing to open the Run and Debug view.

Debug actions
Once a debug session starts, the Debug toolbar will appear on the top of the editor.

https://code.visualstudio.com/docs/editor/debugging#_debug-actions

Action Explanation

Continue /
Pause
F5

Continue: Resume normal program/script execution (up to the next breakpoint).
Pause: Inspect code executing at the current line and debug line-by-line.

Step Over
F10

Execute the next method as a single command without inspecting or following its
component steps.

Step Into
F11

Enter the next method to follow its execution line-by-line.

Step Out
Shift+F11

When inside a method or subroutine, return to the earlier execution context by
completing remaining lines of the current method as though it were a single
command.

Restart
Ctrl+Shift+F5

Terminate the current program execution and start debugging again using the
current run configuration.

Stop
Shift+F5

Terminate the current program execution.

Tip: Use the setting debug.toolBarLocation to control the location of the debug toolbar. It can be
the default floating, docked to the Run and Debug view, or hidden. A floating debug toolbar can
be dragged horizontally and also down to the editor area.

Run mode

In addition to debugging a program, VS Code supports running the program. The Debug: Run (Start
Without Debugging) action is triggered with Ctrl+F5 and uses the currently selected launch
configuration. Many of the launch configuration attributes are supported in 'Run' mode. VS Code
maintains a debug session while the program is running, and pressing the Stop button terminates the
program.

Tip: The Run action is always available, but not all debugger extensions support 'Run'. In this case,
'Run' will be the same as 'Debug'.

Breakpoints

https://code.visualstudio.com/docs/editor/debugging#_run-mode
https://code.visualstudio.com/docs/editor/debugging#_breakpoints

Breakpoints can be toggled by clicking on the editor margin or using F9 on the current line. Finer
breakpoint control (enable/disable/reapply) can be done in the Run and
Debug view's BREAKPOINTS section.

• Breakpoints in the editor margin are normally shown as red filled circles.
• Disabled breakpoints have a filled gray circle.
• When a debugging session starts, breakpoints that cannot be registered with the debugger

change to a gray hollow circle. The same might happen if the source is edited while a debug
session without live-edit support is running.

If the debugger supports breaking on different kinds of errors or exceptions, those will also be
available in the BREAKPOINTS view.

The Reapply All Breakpoints command sets all breakpoints again to their original location. This is
helpful if your debug environment is "lazy" and "misplaces" breakpoints in source code that has not
yet been executed.

Optionally, breakpoints can be shown in the editor's overview ruler by enabling the
setting debug.showBreakpointsInOverviewRuler:

Logpoints

https://code.visualstudio.com/docs/editor/debugging#_logpoints

A Logpoint is a variant of a breakpoint that does not "break" into the debugger but instead logs a
message to the console. Logpoints are especially useful for injecting logging while debugging
production servers that cannot be paused or stopped.

A Logpoint is represented by a "diamond" shaped icon. Log messages are plain text but can include
expressions to be evaluated within curly braces ('{}').

Just like regular breakpoints, Logpoints can be enabled or disabled and can also be controlled by a
condition and/or hit count.

Note: Logpoints are supported by VS Code's built-in Node.js debugger, but can be implemented by
other debug extensions. The Python and Java extensions, for example, support Logpoints.

Data inspection
Variables can be inspected in the VARIABLES section of the Run and Debug view or by hovering
over their source in the editor. Variable values and expression evaluation are relative to the selected
stack frame in the CALL STACK section.

https://code.visualstudio.com/docs/python/python-tutorial
https://code.visualstudio.com/docs/java/java-tutorial
https://code.visualstudio.com/docs/editor/debugging#_data-inspection

Variable values can be modified with the Set Value action from the variable's context menu.
Additionally, you can use the Copy Value action to copy the variable's value, or Copy as
Expression action to copy an expression to access the variable.

Variables and expressions can also be evaluated and watched in the Run and
Debug view's WATCH section.

Variable names and values can be filtered by typing while the focus is on the VARIABLES section.

Launch.json attributes
There are many launch.json attributes to help support different debuggers and debugging scenarios.
As mentioned above, you can use IntelliSense (Ctrl+Space) to see the list of available attributes once
you have specified a value for the type attribute.

https://code.visualstudio.com/docs/editor/debugging#_launchjson-attributes

The following attributes are mandatory for every launch configuration:

• type - the type of debugger to use for this launch configuration. Every installed debug
extension introduces a type: node for the built-in Node debugger, for example,
or php and go for the PHP and Go extensions.

• request - the request type of this launch configuration. Currently, launch and attach are
supported.

• name - the reader-friendly name to appear in the Debug launch configuration dropdown.

Here are some optional attributes available to all launch configurations:

• presentation - using the order, group, and hidden attributes in the presentation object, you
can sort, group, and hide configurations and compounds in the Debug configuration
dropdown and in the Debug quick pick.

• preLaunchTask - to launch a task before the start of a debug session, set this attribute to the
label of a task specified in tasks.json (in the workspace's .vscode folder). Or, this can be set
to ${defaultBuildTask} to use your default build task.

• postDebugTask - to launch a task at the very end of a debug session, set this attribute to the
name of a task specified in tasks.json (in the workspace's .vscode folder).

• internalConsoleOptions - this attribute controls the visibility of the Debug Console panel
during a debugging session.

https://code.visualstudio.com/docs/editor/tasks
https://code.visualstudio.com/docs/editor/tasks

• debugServer - for debug extension authors only: this attribute allows you to connect to a
specified port instead of launching the debug adapter.

• serverReadyAction - if you want to open a URL in a web browser whenever the program under
debugging outputs a specific message to the debug console or integrated terminal. For details
see section Automatically open a URI when debugging a server program below.

Many debuggers support some of the following attributes:

• program - executable or file to run when launching the debugger
• args - arguments passed to the program to debug
• env - environment variables (the value null can be used to "undefine" a variable)
• envFile - path to dotenv file with environment variables
• cwd - current working directory for finding dependencies and other files
• port - port when attaching to a running process
• stopOnEntry - break immediately when the program launches
• console - what kind of console to use, for example, internalConsole, integratedTerminal,

or externalTerminal

Variable substitution
VS Code makes commonly used paths and other values available as variables and supports variable
substitution inside strings in launch.json. This means that you do not have to use absolute paths in
debug configurations. For example, ${workspaceFolder} gives the root path of a workspace
folder, ${file} the file open in the active editor, and ${env:Name} the environment variable 'Name'.
You can see a full list of predefined variables in the Variables Reference or by invoking IntelliSense
inside the launch.json string attributes.

{

 "type": "node",

 "request": "launch",

 "name": "Launch Program",

 "program": "${workspaceFolder}/app.js",

 "cwd": "${workspaceFolder}",

 "args": ["${env:USERNAME}"]

}

Platform-specific properties

https://code.visualstudio.com/docs/editor/debugging#_automatically-open-a-uri-when-debugging-a-server-program
https://code.visualstudio.com/docs/editor/debugging#_variable-substitution
https://code.visualstudio.com/docs/editor/variables-reference
https://code.visualstudio.com/docs/editor/debugging#_platformspecific-properties

Launch.json supports defining values (for example, arguments to be passed to the program) that
depend on the operating system where the debugger is running. To do so, put a platform-specific
literal into the launch.json file and specify the corresponding properties inside that literal.

Below is an example that passes "args" to the program differently on Windows:

{

 "version": "0.2.0",

 "configurations": [

 {

 "type": "node",

 "request": "launch",

 "name": "Launch Program",

 "program": "${workspaceFolder}/node_modules/gulp/bin/gulpfile.js",

 "args": ["myFolder/path/app.js"],

 "windows": {

 "args": ["myFolder\\path\\app.js"]

 }

 }

]

}

Valid operating properties are "windows" for Windows, "linux" for Linux, and "osx" for macOS.
Properties defined in an operating system specific scope override properties defined in the global
scope.

Please note that the type property cannot be placed inside a platform-specific section,
because type indirectly determines the platform in remote debugging scenarios, and that would
result in a cyclic dependency.

In the example below, debugging the program always stops on entry except on macOS:

{

 "version": "0.2.0",

 "configurations": [

 {

 "type": "node",

 "request": "launch",

 "name": "Launch Program",

 "program": "${workspaceFolder}/node_modules/gulp/bin/gulpfile.js",

 "stopOnEntry": true,

 "osx": {

 "stopOnEntry": false

 }

 }

]

}

Global launch configuration
VS Code supports adding a "launch" object inside your User settings. This "launch" configuration will
then be shared across your workspaces. For example:

"launch": {

 "version": "0.2.0",

 "configurations": [{

 "type": "node",

 "request": "launch",

 "name": "Launch Program",

 "program": "${file}"

 }]

}

Advanced breakpoint topics

Conditional breakpoints

A powerful VS Code debugging feature is the ability to set conditions based on expressions, hit
counts, or a combination of both.

• Expression condition: The breakpoint will be hit whenever the expression evaluates to true.

https://code.visualstudio.com/docs/editor/debugging#_global-launch-configuration
https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/editor/debugging#_advanced-breakpoint-topics
https://code.visualstudio.com/docs/editor/debugging#_conditional-breakpoints

• Hit count: The 'hit count' controls how many times a breakpoint needs to be hit before it will
'break' execution. Whether a 'hit count' is respected and the exact syntax of the expression vary
among debugger extensions.

You can add a condition and/or hit count when creating a source breakpoint (with the Add
Conditional Breakpoint action) or when modifying an existing one (with the Edit Condition action).
In both cases, an inline text box with a dropdown menu opens where you can enter expressions:

Condition and hit count editing support is also supported for function and exception breakpoints.
You can initiate condition editing from the context menu or the new inline Edit Condition action.

An example of condition editing in the BREAKPOINTS view:

If a debugger does not support conditional breakpoints, the Add Conditional Breakpoint and Edit
Condition actions will be missing.

Inline breakpoints

Inline breakpoints will only be hit when the execution reaches the column associated with the inline
breakpoint. This is particularly useful when debugging minified code which contains multiple
statements in a single line.

An inline breakpoint can be set using Shift+F9 or through the context menu during a debug session.
Inline breakpoints are shown inline in the editor.

Inline breakpoints can also have conditions. Editing multiple breakpoints on a line is possible through
the context menu in the editor's left margin.

Function breakpoints

Instead of placing breakpoints directly in source code, a debugger can support creating breakpoints
by specifying a function name. This is useful in situations where source is not available but a function
name is known.

A function breakpoint is created by pressing the + button in the BREAKPOINTS section header and
entering the function name. Function breakpoints are shown with a red triangle in
the BREAKPOINTS section.

Data breakpoints

If a debugger supports data breakpoints, they can be set from the context menu in
the VARIABLES view. The Break on Value Change/Read/Access commands will add a data
breakpoint that is hit when the value of the underlying variable changes/is read/is accessed. Data
breakpoints are shown with a red hexagon in the BREAKPOINTS section.

Debug Console REPL

https://code.visualstudio.com/docs/editor/debugging#_inline-breakpoints
https://code.visualstudio.com/docs/editor/debugging#_function-breakpoints
https://code.visualstudio.com/docs/editor/debugging#_data-breakpoints
https://code.visualstudio.com/docs/editor/debugging#_debug-console-repl

Expressions can be evaluated with the Debug Console REPL (Read-Eval-Print Loop) feature. To open
the Debug Console, use the Debug Console action at the top of the Debug pane or use the View:
Debug Console command (Ctrl+Shift+Y). Expressions are evaluated after you press Enter and the
Debug Console REPL shows suggestions as you type. If you need to enter multiple lines,
use Shift+Enter between the lines and then send all lines for evaluation with Enter. Debug Console
input uses the mode of the active editor, which means that the Debug Console input supports syntax
coloring, indentation, auto closing of quotes, and other language features.

Note: You must be in a running debug session to use the Debug Console REPL.

Redirect input/output to/from the debug target
Redirecting input/output is debugger/runtime specific, so VS Code does not have a built-in solution
that works for all debuggers.

Here are two approaches you might want to consider:

1. Launch the program to debug ("debug target") manually in a terminal or command prompt
and redirect input/output as needed. Make sure to pass the appropriate command line options
to the debug target so that a debugger can attach to it. Create and run an "attach" debug
configuration that attaches to the debug target.

2. If the debugger extension you are using can run the debug target in VS Code's Integrated
Terminal (or an external terminal), you can try to pass the shell redirect syntax (for example, "<"
or ">") as arguments.

Here's an example launch.json configuration:

https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://code.visualstudio.com/docs/editor/debugging#_redirect-inputoutput-tofrom-the-debug-target

{

 "name": "launch program that reads a file from stdin",

 "type": "node",

 "request": "launch",

 "program": "program.js",

 "console": "integratedTerminal",

 "args": ["<", "in.txt"]

}

This approach requires that the "<" syntax is passed through the debugger extension and ends up
unmodified in the Integrated Terminal.

Multi-target debugging
For complex scenarios involving more than one process (for example, a client and a server), VS Code
supports multi-target debugging.

Using multi-target debugging is simple: after you've started a first debug session, you can just launch
another session. As soon as a second session is up and running, the VS Code UI switches to multi-
target mode:

• The individual sessions now show up as top-level elements in the CALL STACK view.

• The debug toolbar shows the currently active session (and all other sessions are available in a

dropdown menu).

• Debug actions (for example, all actions in the debug toolbar) are performed on the active

session. The active session can be changed either by using the dropdown menu in the debug
toolbar or by selecting a different element in the CALL STACK view.

https://code.visualstudio.com/docs/editor/debugging#_multitarget-debugging

Compound launch configurations

An alternative way to start multiple debug sessions is by using a compound launch configuration. A
compound launch configuration lists the names of two or more launch configurations that should be
launched in parallel. Optionally a preLaunchTask can be specified that is run before the individual
debug sessions are started. The boolean flag stopAll controls whether manually terminating one
session will stop all of the compound sessions.

{

 "version": "0.2.0",

 "configurations": [

 {

 "type": "node",

 "request": "launch",

 "name": "Server",

 "program": "${workspaceFolder}/server.js"

 },

 {

 "type": "node",

 "request": "launch",

 "name": "Client",

 "program": "${workspaceFolder}/client.js"

 }

],

 "compounds": [

 {

 "name": "Server/Client",

 "configurations": ["Server", "Client"],

 "preLaunchTask": "${defaultBuildTask}",

 "stopAll": true

 }

]

}

https://code.visualstudio.com/docs/editor/debugging#_compound-launch-configurations

Compound launch configurations are displayed in the launch configuration dropdown menu.

Remote debugging
VS Code does not itself support remote debugging: this is a feature of the debug extension you are
using, and you should consult the extension's page in the Marketplace for support and details.

There is, however, one exception: the Node.js debugger included in VS Code supports remote
debugging. See the Node.js Debugging topic to learn how to configure this.

Automatically open a URI when debugging a server program
Developing a web program typically requires opening a specific URL in a web browser in order to hit
the server code in the debugger. VS Code has a built-in feature "serverReadyAction" to automate
this task.

Here is an example of a simple Node.js Express application:

var express = require('express');

var app = express();

app.get('/', function(req, res) {

 res.send('Hello World!');

});

app.listen(3000, function() {

 console.log('Example app listening on port 3000!');

});

This application first installs a "Hello World" handler for the "/" URL and then starts to listen for HTTP
connections on port 3000. The port is announced in the Debug Console, and typically, the developer
would now type http://localhost:3000 into their browser application.

The serverReadyAction feature makes it possible to add a structured property serverReadyAction to
any launch config and select an "action" to be performed:

{

 "type": "node",

 "request": "launch",

 "name": "Launch Program",

https://code.visualstudio.com/docs/editor/debugging#_remote-debugging
https://marketplace.visualstudio.com/search?target=VSCode&category=Debuggers&sortBy=Installs
https://code.visualstudio.com/docs/nodejs/nodejs-debugging#_remote-debugging
https://code.visualstudio.com/docs/editor/debugging#_automatically-open-a-uri-when-debugging-a-server-program
https://expressjs.com/

 "program": "${workspaceFolder}/app.js",

 "serverReadyAction": {

 "pattern": "listening on port ([0-9]+)",

 "uriFormat": "http://localhost:%s",

 "action": "openExternally"

 }

}

Here the pattern property describes the regular expression for matching the program's output string
that announces the port. The pattern for the port number is put into parenthesis so that it is available
as a regular expression capture group. In this example, we are extracting only the port number, but it
is also possible to extract a full URI.

The uriFormat property describes how the port number is turned into a URI. The first %s is substituted
by the first capture group of the matching pattern.

The resulting URI is then opened outside of VS Code ("externally") with the standard application
configured for the URI's scheme.

Trigger Debugging via Edge or Chrome

Alternatively, the action can be set to debugWithEdge or debugWithChrome. In this mode,
a webRoot property can be added that is passed to the Chrome or Edge debug session.

To simplify things a bit, most properties are optional and we use the following fallback values:

• pattern: "listening on.* (https?://\\S+|[0-9]+)" which matches the commonly used
messages "listening on port 3000" or "Now listening on: https://localhost:5001".

• uriFormat: "http://localhost:%s"
• webRoot: "${workspaceFolder}"

Triggering an Arbitrary Launch Config

In some cases, you may need to configure additional options for the browser debug session--or use a
different debugger entirely. You can do this by setting action to startDebugging with a name property
set to the name of the launch configuration to start when the pattern is matched.

The named launch configuration must be in the same file or folder as the one with
the serverReadyAction.

Here the serverReadyAction feature in action:

https://code.visualstudio.com/docs/editor/debugging#_trigger-debugging-via-edge-or-chrome
https://code.visualstudio.com/docs/editor/debugging#_triggering-an-arbitrary-launch-config

Next steps
To learn about VS Code's Node.js debugging support, take a look at:

• Node.js - Describes the Node.js debugger, which is included in VS Code.
• TypeScript - The Node.js debugger also supports TypeScript debugging.

To see tutorials on the basics of Node.js debugging, check out these videos:

• Intro Video - Debugging - Showcases the basics of debugging.
• Getting started with Node.js debugging - Shows how to attach a debugger to a running

Node.js process.

To learn about debugging support for other programming languages via VS Code extensions:

• C++
• Python
• Java

To learn about VS Code's task running support, go to:

• Tasks - Describes how to run tasks with Gulp, Grunt, and Jake and how to show errors and
warnings.

To write your own debugger extension, visit:

https://code.visualstudio.com/docs/editor/debugging#_next-steps
https://code.visualstudio.com/docs/nodejs/nodejs-debugging
https://code.visualstudio.com/docs/typescript/typescript-debugging
https://code.visualstudio.com/docs/introvideos/debugging
https://www.youtube.com/watch?v=2oFKNL7vYV8
https://code.visualstudio.com/docs/cpp/cpp-debug
https://code.visualstudio.com/docs/python/debugging
https://code.visualstudio.com/docs/java/java-debugging
https://code.visualstudio.com/docs/editor/tasks

• Debugger Extension - Uses a mock sample to illustrate the steps required to create a VS Code
debug extension.

Common questions

What are the supported debugging scenarios?

Debugging of Node.js-based applications is supported on Linux, macOS, and Windows out of the box
with VS Code. Many other scenarios are supported by VS Code extensions available in the
Marketplace.

I do not see any launch configurations in the Run and Debug view dropdown. What is
wrong?

The most common problem is that you did not set up launch.json or there is a syntax error in that
file. Alternatively, you might need to open a folder, since no-folder debugging does not support
launch configurations.

https://code.visualstudio.com/api/extension-guides/debugger-extension
https://code.visualstudio.com/docs/editor/debugging#_common-questions
https://code.visualstudio.com/docs/editor/debugging#_what-are-the-supported-debugging-scenarios
https://marketplace.visualstudio.com/vscode/Debuggers?sortBy=Installs
https://code.visualstudio.com/docs/editor/debugging#_i-do-not-see-any-launch-configurations-in-the-run-and-debug-view-dropdown-what-is-wrong
https://code.visualstudio.com/docs/editor/debugging#_i-do-not-see-any-launch-configurations-in-the-run-and-debug-view-dropdown-what-is-wrong

Profiles in Visual Studio Code
Visual Studio Code has hundreds of settings, thousands of extensions, and innumerable ways to
adjust the UI layout to customize the editor. VS Code Profiles let you create sets of customizations
and quickly switch between them or share them with others. This topic explains how to create, modify,
export, and import profiles.

Create a Profile
VS Code treats your current configuration as the Default Profile. As you modify settings, install
extensions, or change UI layout by moving views, these customizations are tracked in the Default
Profile.

To create a new profile, you can use the File > Preferences > Profiles > Create Profile menu item
(Code > Preferences > Profiles > Create Profile on macOS).

You can create a new profile based on the current profile (Profiles: Create from Current Profiles) or
create an Empty Profile. An Empty Profile includes no user customizations (settings, extensions,
snippets, etc.).

You can also access the Profile command menu via the Manage gear button in the lower right of the
Activity bar.

https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/editor/extension-marketplace
https://code.visualstudio.com/docs/editor/profiles#_create-a-profile

The Profiles: Create Profile command is also available in the Command Palette (Ctrl+Shift+P).

Once you choose whether to create a new profile based on the current profile or an empty profile,
you are prompted to enter a name for the new profile.

Check the current profile

The current profile name is displayed in several places in the VS Code UI:

• Title bar
• File > Preferences > Profiles
• Manage gear button hover

If you are still using the Default Profile, no profile name is displayed.

The Manage gear button displays a badge with the first two letters of the active profile so you can
quickly check which profile you are running.

Edit a profile

You can edit a profile just as you would normally change any VS Code configuration. You can
install/uninstall/disable extensions, change settings, and adjust the editor's UI layout (for example,
moving and hiding views) like normal. These changes are stored in your currently active profile.

https://code.visualstudio.com/docs/editor/profiles#_check-the-current-profile
https://code.visualstudio.com/docs/editor/profiles#_edit-a-profile

Workspace associations

When you create or select an existing profile, it is associated with the current workspace and
whenever you open that folder, the workspace's profile is active. If you open another folder, the
profile switches to that folder's associated profile if one has been set or remains on the last used
profile.

Managing profiles

Switch profiles

You can quickly switch between profiles with the Profiles: Switch Profile command in the Command
Palette, which presents a dropdown listing your available profiles.

You can also switch profiles by selecting a profile from the list displayed in the Profiles menus,
available via the Manage gear button or File > Preferences > Profiles.

Rename a profile

You can rename an existing profile via the Rename command in the Profiles menu.

Delete a profile

You can delete a profile via the Delete Profile command. The Delete Profile drop down lets you
select which profile(s) to delete.

Profile contents
The Profiles: Show Contents command (available in the Command Palette or Profiles menus) brings
up the Profiles view, where you can review the customizations for the profile.

https://code.visualstudio.com/docs/editor/profiles#_workspace-associations
https://code.visualstudio.com/docs/editor/profiles#_managing-profiles
https://code.visualstudio.com/docs/editor/profiles#_switch-profiles
https://code.visualstudio.com/docs/editor/profiles#_rename-a-profile
https://code.visualstudio.com/docs/editor/profiles#_delete-a-profile
https://code.visualstudio.com/docs/editor/profiles#_profile-contents

A profile can include:

• Settings - In a profile-specific settings.json file.
• Extensions - The list of extensions included in the current profile.
• UI state - View layout (positions), visible views and actions.
• Keybindings - In a profile-specific keybindings.json file.
• Snippets - In a profile-specific {language}.json files.
• User Tasks - In a profile-specific tasks.json file.

When you create a new profile based on the Default Profile, the profile-specific configuration files are
populated from your user configuration files. Workspace-specific settings are not automatically
included in a new profile.

Note: Unchecking an extension in the Profiles view does not remove or disable the extension from
the current profile but does remove the extension if you export the profile.

Share Profiles

Export

You can export a profile in order to save it or share it with others. The Export Profile command
displays the Profiles view with the contents of the active profile and an Export button. You can
unselect various elements of the profile such as extensions or configuration files before you export
the profile.

When you select Export, you are prompted for the profile name and whether you want to export to
a GitHub gist or your local file system.

https://code.visualstudio.com/docs/editor/profiles#_share-profiles
https://code.visualstudio.com/docs/editor/profiles#_export
https://docs.github.com/get-started/writing-on-github/editing-and-sharing-content-with-gists/creating-gists

Save as a GitHub gist

After you save a profile to GitHub (you'll be prompted to log into GitHub), a dialog gives you the
option to Copy Link so you can share your profile gist URL with others. The URL includes an
autogenerated GUID and has the format https://vscode.dev/profile/github/{GUID}. The GitHub
gist is marked as Secret, so only those with the link can see the gist.

If you launch the profile URL, it opens VS Code for the Web (vscode.dev) with the Profiles view open
and the imported profile contents displayed. You can unselect profile elements if you wish and you
need to manually Install Extensions (via the download cloud button) if you want to continue using
that profile in vscode.dev.

You also have the option to Import Profile in Visual Studio Code, which opens VS Code Desktop
with the profile's contents displayed and an Import Profile button.

You can review your gists at https://gist.github.com/{username}. From your GitHub gist page you
can rename, delete, or copy the GUID of a gist.

Save as a local file

If you chose to save the profile as a local file, a Save Profile dialog lets you place the file on your local
machine. A profile is persisted in a file with the extension .code-profile.

Import

To import an existing profile, run the Import Profiles command. You are prompted for the URL of a
GitHub gist or the file location of a profile via an Import Profile dialog. Once you have selected the
profile, the Profiles view opens and displays the profile to import. You can unselect some profile
elements if you don't want to import them. Select the Import Profile button and you will now be
using the imported profile.

Uses for Profiles
Profiles are a great way to customize VS Code to better fit your needs. In this section, we look at some
common use cases for profiles.

Since profiles are remembered per workspace, they are a great way to customize VS Code for a
specific programming language. For example, you can create a JavaScript frontend profile that
includes the extensions, settings, and customizations you use for JavaScript development in one
workspace, and have a Python backend profile that includes the extensions, settings, and
customizations you use for Python development in another workspace. Using this approach, you can
easily switch between workspaces and always have VS Code configured the right way.

Demos

When doing a demo, you can use a profile to set up a specific configuration for your demo. For
example, you can create a profile with a specific set of extensions and settings like zoom level, font

https://code.visualstudio.com/docs/editor/profiles#_save-as-a-github-gist
https://code.visualstudio.com/docs/editor/profiles#_save-as-a-local-file
https://code.visualstudio.com/docs/editor/profiles#_import
https://code.visualstudio.com/docs/editor/profiles#_uses-for-profiles
https://code.visualstudio.com/docs/editor/profiles#_demos

size, and color theme. By doing this, a demo will not mess up your normal VS Code setup and you can
customize VS Code for better visibility during your presentation.

Education

Profiles can be used to customize VS Code for students to ease the use in a classroom setting. Profiles
allow educators to quickly share a customized VS Code setup with students. For example, educators
can create a profile with a specific set of extensions and settings needed for a computer science class
and then share that profile with students.

Report VS Code issues

One use of an Empty Profile is to reset your editor when you want to report an issue with VS Code. An
Empty Profile disables all extensions and modified settings so you can quickly see if the issue is due to
an extension, a setting, or is in VS Code core.

Profile Templates
VS Code comes with a predefined set of profile templates that you can use to customize VS Code for
your specific workflow. To create a new profile based on a template, select a Profile Template when
going through the Create Profile flow.

Python Profile Template

The Python profile is a good starting point for Python development. It comes with Python specific
snippets and has the following extensions:

• autoDocstring - Generate Python docstrings automatically.
• Black Formatter - Formatting support using the black formatter.
• Docker - Create, manage, and debug containerized applications.
• Even Better TOML - Fully-featured TOML support.
• Python - IntelliSense, linting, formatting, debugging, refactoring.
• Python Environment Manager - Manage Python environments and packages.
• Remote Development extension pack - Supports SSH, WSL, and Dev Containers.
• Ruff - Integrates the Ruff Python linter.

This profile also sets the following settings:

 "python.analysis.autoImportCompletions": true,

 "python.analysis.fixAll": ["source.unusedImports"],

 "workbench.colorTheme": "Default Dark+ Experimental",

 "editor.defaultFormatter": "ms-python.black-formatter"

Data Science Profile Template

https://code.visualstudio.com/docs/editor/profiles#_education
https://code.visualstudio.com/docs/editor/profiles#_report-vs-code-issues
https://code.visualstudio.com/docs/editor/profiles#_profile-templates
https://code.visualstudio.com/docs/editor/profiles#_python-profile-template
https://marketplace.visualstudio.com/items?itemName=njpwerner.autodocstring
https://marketplace.visualstudio.com/items?itemName=ms-python.black-formatter
https://github.com/python/black
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker
https://marketplace.visualstudio.com/items?itemName=tamasfe.even-better-toml
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=donjayamanne.python-environment-manager
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack
https://marketplace.visualstudio.com/items?itemName=charliermarsh.ruff
https://github.com/charliermarsh/ruff
https://code.visualstudio.com/docs/editor/profiles#_data-science-profile-template

The Data Science profile is a good starting point for all data and notebook work. It comes with
specific snippets and has the following extensions:

• Data Wrangler - Data cleaning and preparation for tabular datasets.
• Black Formatter - Formatting support using the black formatter.
• Jupyter - Use Jupyter notebooks within VS Code.
• Python - IntelliSense, linting, formatting, debugging, refactoring.
• Dev Containers - Create custom development environments inside a Docker container.
• GitHub Copilot - Your AI pair programmer.

This profile also sets the following settings:

 "[python]": {

 "editor.defaultFormatter": "ms-python.black-formatter",

 "editor.formatOnType": true,

 "editor.formatOnSave": true

 },

 "editor.inlineSuggest.enabled": true,

 "editor.lineHeight": 17,

 "breadcrumbs.enabled": false,

 "files.autoSave": "afterDelay",

 "jupyter.themeMatplotlibPlots": true,

 "jupyter.widgetScriptSources": [

 "unpkg.com",

 "jsdelivr.com"

],

 "notebook.experimental.outputScrolling": true,

 // "notebook.outline.showCodeCells": true,

 "workbench.colorTheme": "Default Dark+ Experimental",

 "files.exclude": {

 "**/.csv": true,

 "**/.parquet": true,

 "**/.pkl": true,

 "**/.xls": true

https://marketplace.visualstudio.com/items?itemName=ms-toolsai.datawrangler
https://marketplace.visualstudio.com/items?itemName=ms-python.black-formatter
https://github.com/python/black
https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers
https://marketplace.visualstudio.com/items?itemName=GitHub.copilot

 }

Doc Writer Profile Template

The Doc Writer profile is a good lightweight setup for writing documentation. It comes with the
following extensions:

• Code Spell Checker - Spelling checker for source code.
• Markdown Checkboxes - Adds checkbox support to the VS Code built-in Markdown Preview.
• Markdown Emoji - Adds emoji syntax support to Markdown Preview and notebook Markdown

cells.
• Markdown Footnotes - Adds ^footnote syntax support to the Markdown Preview.
• Markdown Preview GitHub Styling - Use GitHub styling in the Markdown Preview.
• Markdown Preview Mermaid Support - Mermaid diagrams and flowcharts.
• Markdown yaml Preamble - Renders YAML front matter as a table.
• markdownlint - Markdown linting and style checking for Visual Studio Code.

This profile also sets the following settings:

 "workbench.colorTheme": "Default Light+ Experimental",

 "editor.minimap.enabled": false,

 "breadcrumbs.enabled": false,

 "editor.glyphMargin": false,

 "explorer.decorations.badges": false,

 "explorer.decorations.colors": false,

 "editor.fontLigatures": true,

 "files.autoSave": "afterDelay",

 "git.enableSmartCommit": true,

 "window.commandCenter": true,

 "editor.renderWhitespace": "none",

 "workbench.editor.untitled.hint": "hidden",

 "markdown.validate.enabled": true,

 "markdown.updateLinksOnFileMove.enabled": "prompt",

 "workbench.startupEditor": "none"

Node.js Profile Template

The Node.js profile is a good starting point for all Node.js work. It comes with the following
extensions:

https://code.visualstudio.com/docs/editor/profiles#_doc-writer-profile-template
https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.code-spell-checker
https://marketplace.visualstudio.com/items?itemName=bierner.markdown-checkbox
https://marketplace.visualstudio.com/items?itemName=bierner.markdown-emoji
https://marketplace.visualstudio.com/items?itemName=bierner.markdown-footnotes
https://marketplace.visualstudio.com/items?itemName=bierner.markdown-preview-github-styles
https://marketplace.visualstudio.com/items?itemName=bierner.markdown-mermaid
https://marketplace.visualstudio.com/items?itemName=bierner.markdown-yaml-preamble
https://marketplace.visualstudio.com/items?itemName=DavidAnson.vscode-markdownlint
https://code.visualstudio.com/docs/editor/profiles#_nodejs-profile-template

• ESLint - Integrates ESLint JavaScript into VS Code.
• Dev Containers - Create custom development environments inside a Docker container.
• Docker - Create, manage, and debug containerized applications.
• DotENV - Support for dotenv file syntax.
• EditorConfig for VS Code - EditorConfig Support for Visual Studio Code.
• JavaScript (ES6) code snippets - Code snippets for JavaScript in ES6 syntax.
• Jest - Use Facebook's jest testing framework.
• Microsoft Edge Tools for VS Code - Use the Microsoft Edge Tools from within VS Code.
• npm Intellisense - Autocomplete npm modules in import statements.
• Prettier - Code formatter - Code formatter using Prettier.
• Rest Client - REST Client for Visual Studio Code.
• YAML - YAML language support with built-in Kubernetes syntax.

This profile comes with the following settings:

 "editor.formatOnPaste": true,

 "git.autofetch": true,

 "[markdown]": {

 "editor.wordWrap": "on"

 },

 "[json]": {

 "editor.defaultFormatter": "esbenp.prettier-vscode"

 },

 "[jsonc]": {

 "editor.defaultFormatter": "vscode.json-language-features"

 },

 "[html]": {

 "editor.defaultFormatter": "esbenp.prettier-vscode"

 },

 "[javascript]": {

 "editor.defaultFormatter": "esbenp.prettier-vscode"

 },

 "[typescript]": {

 "editor.defaultFormatter": "esbenp.prettier-vscode"

 },

https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker
https://marketplace.visualstudio.com/items?itemName=mikestead.dotenv
https://marketplace.visualstudio.com/items?itemName=EditorConfig.EditorConfig
https://marketplace.visualstudio.com/items?itemName=xabikos.JavaScriptSnippets
https://marketplace.visualstudio.com/items?itemName=Orta.vscode-jest
https://jestjs.io/
https://marketplace.visualstudio.com/items?itemName=ms-edgedevtools.vscode-edge-devtools
https://marketplace.visualstudio.com/items?itemName=christian-kohler.npm-intellisense
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://prettier.io/
https://marketplace.visualstudio.com/items?itemName=humao.rest-client
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml

 "workbench.colorTheme": "Default Dark+ Experimental"

Angular Profile Template

The Angular profile is a good starting point for all Angular work. It comes with the following
extensions:

• Angular Language Service - Editor services for Angular templates.
• Angular Schematics - Integrate Angular schematics (CLI commands).
• angular2-switcher - Easily navigate to typescript|template|style in angular2 project.
• Dev Containers - Create custom development environments inside a Docker container.
• EditorConfig for VS Code - EditorConfig Support for Visual Studio Code.
• ESLint - Integrates ESLint JavaScript into VS Code.
• JavaScript (ES6) code snippets - Code snippets for JavaScript in ES6 syntax.
• Jest - Use Facebook's jest testing framework.
• Material Icon Theme - Material Design Icons for Visual Studio Code.
• Microsoft Edge Tools for VS Code - Use the Microsoft Edge Tools from within VS Code.
• Playwright Test for VSCode - Run Playwright tests in Visual Studio Code.
• Prettier - Code formatter - Code formatter using Prettier.
• Rest Client - REST Client for Visual Studio Code.
• YAML - YAML language support with built-in Kubernetes syntax.

This profile sets the following settings:

 "editor.formatOnPaste": true,

 "git.autofetch": true,

 "[markdown]": {

 "editor.wordWrap": "on"

 },

 "[json]": {

 "editor.defaultFormatter": "esbenp.prettier-vscode"

 },

 "[jsonc]": {

 "editor.defaultFormatter": "vscode.json-language-features"

 },

 "[html]": {

 "editor.defaultFormatter": "esbenp.prettier-vscode"

 },

https://code.visualstudio.com/docs/editor/profiles#_angular-profile-template
https://marketplace.visualstudio.com/items?itemName=Angular.ng-template
https://marketplace.visualstudio.com/items?itemName=cyrilletuzi.angular-schematics
https://marketplace.visualstudio.com/items?itemName=infinity1207.angular2-switcher
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers
https://marketplace.visualstudio.com/items?itemName=EditorConfig.EditorConfig
https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
https://marketplace.visualstudio.com/items?itemName=xabikos.JavaScriptSnippets
https://marketplace.visualstudio.com/items?itemName=Orta.vscode-jest
https://jestjs.io/
https://marketplace.visualstudio.com/items?itemName=PKief.material-icon-theme
https://marketplace.visualstudio.com/items?itemName=ms-edgedevtools.vscode-edge-devtools
https://marketplace.visualstudio.com/items?itemName=ms-playwright.playwright
https://playwright.dev/
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://prettier.io/
https://marketplace.visualstudio.com/items?itemName=humao.rest-client
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml

 "[javascript]": {

 "editor.defaultFormatter": "esbenp.prettier-vscode"

 },

 "[typescript]": {

 "editor.defaultFormatter": "esbenp.prettier-vscode"

 },

 "workbench.iconTheme": "material-icon-theme",

 "workbench.colorTheme": "Default Dark+ Experimental",

Java General Profile Template

The Java General profile is a good starting point for all Java work. It customizes the layout to improve
the Java experience and comes with the following extensions from the Extension Pack for Java:

• Debugger for Java - A lightweight Java debugger.
• IntelliCode - AI-assisted development.
• IntelliCode API Usage Examples - Provides code examples for over 100K different APIs.
• Language Support for Java(TM) by Red Hat - Fundamental Java language support, Linting,

Intellisense, formatting, refactoring.
• Maven for Java - Manage Maven projects and builds.
• Project Manager for Java - Manage Java projects within VS Code.
• Test Runner for Java - Run and debug JUnit or TestNG test cases.

Java Spring Profile Template

The Java Spring profile is a good starting point for all Java and Spring developers. It builds on the Java
General profile and add the following extensions from the Spring Boot Extension Pack:

• Spring Boot Dashboard - Provides Spring Boot live data visualization and observation in your
running Spring applications.

• Spring Boot Tools - Rich language support for Spring Boot files.
• Spring Initializr Java Support - Scaffold and generate Spring Boot Java projects.

This profile sets the following settings:

 "[java]": {

 "editor.defaultFormatter": "redhat.java"

 },

 "boot-java.rewrite.reconcile": true,

 "workbench.colorTheme": "Default Dark+ Experimental"

https://code.visualstudio.com/docs/editor/profiles#_java-general-profile-template
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=VisualStudioExptTeam.vscodeintellicode
https://marketplace.visualstudio.com/items?itemName=VisualStudioExptTeam.intellicode-api-usage-examples
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-maven
https://maven.apache.org/
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-dependency
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-test
https://code.visualstudio.com/docs/editor/profiles#_java-spring-profile-template
https://marketplace.visualstudio.com/items?itemName=vmware.vscode-boot-dev-pack
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-spring-boot-dashboard
https://marketplace.visualstudio.com/items?itemName=vmware.vscode-spring-boot
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-spring-initializr

Command line
You can launch VS Code with a specific profile via the --profile command-line interface option. You
pass the name of the profile after the --profile argument and open a folder or a workspace using
that profile. The command line below opens the web-sample folder with the "Web Development"
profile:
code ~/projects/web-sample --profile "Web Development"

If the profile specified does not exist, a new empty profile with the given name is created.

Common Questions

Where are profiles kept?

Profiles are stored under your User configurations similar to your user settings and keybindings.

• Windows %APPDATA%\Code\User\profiles
• macOS $HOME/Library/Application\ Support/Code/User/profiles
• Linux $HOME/.config/Code/User/profiles

If you are using the Insiders version, the intermediate folder name is Code - Insiders.

Where is the UI State globalState.json file?

If you expand the UI State node in the Profiles view, there is a globalState.json entry. This is an in-
memory JSON representation of your profile's UI State, describing the visibility and layout of various
VS Code UI elements. The file does not actually exist on disk and is just a JSON view of the underlying
global state storage.

What is a Temporary Profile?

A Temporary Profile is a profile that is not saved across VS Code sessions. You create a Temporary
Profile via the Profiles: Create a Temporary Profile command in the Command Palette. The
Temporary Profile starts as an Empty Profile and has an automatically generated name (such as Temp
1). You can modify the profile settings and extensions, use the profile for the lifetime of your VS Code
session, but it will be deleted once you close VS Code.

Temporary Profiles are useful if you want to try a new configuration or test an extension without
modifying your default or existing profile. Restarting VS Code reenables the current profile for your
workspace.

How can I remove the profile from my project?

You can set your project back to the Default Profile. If you'd like to remove all profile workspace
associations, you can use the Developer: Reset Workspace Profiles Associations, which will set all
local folders currently assigned a profile back to the Default Profile. Reset Workspace Profiles
Associations does not delete any existing profiles.

https://code.visualstudio.com/docs/editor/profiles#_command-line
https://code.visualstudio.com/docs/editor/profiles#_common-questions
https://code.visualstudio.com/docs/editor/profiles#_where-are-profiles-kept
https://code.visualstudio.com/insiders
https://code.visualstudio.com/docs/editor/profiles#_where-is-the-ui-state-globalstatejson-file
https://code.visualstudio.com/docs/editor/profiles#_what-is-a-temporary-profile
https://code.visualstudio.com/docs/editor/profiles#_how-can-i-remove-the-profile-from-my-project

Do profiles sync across machines (via Settings Sync)?

Yes, you can use Settings Sync to move your profiles across various machines. With Setting Sync
enabled and Profiles checked in the Settings Sync: Configure drop down, all your created profiles
are available.

Why are some settings not exported when exporting a profile?

When exporting profiles, machine-specific settings are not included because these setting would not
be applicable on another machine. For example, settings that point to local paths are not included.

https://code.visualstudio.com/docs/editor/profiles#_do-profiles-sync-across-machines-via-settings-sync
https://code.visualstudio.com/docs/editor/settings-sync
https://code.visualstudio.com/docs/editor/profiles#_why-are-some-settings-not-exported-when-exporting-a-profile

Command Line Interface (CLI)
Visual Studio Code has a powerful command-line interface built-in that lets you control how you
launch the editor. You can open files, install extensions, change the display language, and output
diagnostics through command-line options (switches).

If you are looking for how to run command-line tools inside VS Code, see the Integrated Terminal.

Command line help
To get an overview of the VS Code command-line interface, open a terminal or command prompt and
type code --help. You will see the version, usage example, and list of command line options.

https://code.visualstudio.com/docs/terminal/basics
https://code.visualstudio.com/docs/editor/command-line#_command-line-help

Launching from command line
You can launch VS Code from the command line to quickly open a file, folder, or project. Typically,
you open VS Code within the context of a folder. To do this, from an open terminal or command
prompt, navigate to your project folder and type code .:

Note: Users on macOS must first run a command (Shell Command: Install 'code' command in
PATH) to add VS Code executable to the PATH environment variable. Read the macOS setup guide for
help.

https://code.visualstudio.com/docs/editor/command-line#_launching-from-command-line
https://code.visualstudio.com/docs/setup/mac

Windows and Linux installations should add the VS Code binaries location to your system path. If this
isn't the case, you can manually add the location to the Path environment variable ($PATH on Linux).
For example, on Windows, VS Code is installed under AppData\Local\Programs\Microsoft VS
Code\bin. To review platform-specific setup instructions, see Setup.

Insiders: If you are using the VS Code Insiders preview, you launch your Insiders build with code-
insiders.

Core CLI options
Here are optional arguments you can use when starting VS Code at the command line via code:

Argument Description

-h or --help Print usage

-v or --version Print VS Code version (for example, 1.22.2), GitHub commit ID, and
architecture (for example, x64).

-n or --new-window Opens a new session of VS Code instead of restoring the previous session
(default).

-r or --reuse-window Forces opening a file or folder in the last active window.

-g or --goto When used with file:line{:character}, opens a file at a specific line and
optional character position. This argument is provided since some operating
systems permit : in a file name.

-d or --diff <file1>
<file2>

Open a file difference editor. Requires two file paths as arguments.

-m or --merge <path1>
<path2> <base>
<result>

Perform a three-way merge by providing paths for two modified versions of
a file, the common origin of both modified versions, and the output file to
save merge results.

-w or --wait Wait for the files to be closed before returning.

https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/insiders
https://code.visualstudio.com/docs/editor/command-line#_core-cli-options

Argument Description

--locale <locale> Set the display language (locale) for the VS Code session. (for example, en-
US or zh-TW)

Opening Files and Folders
Sometimes you will want to open or create a file. If the specified file does not exist, VS Code will
create them for you along with any new intermediate folders:

code index.html style.css documentation\readme.md

For both files and folders, you can use absolute or relative paths. Relative paths are relative to the
current directory of the command prompt where you run code.

If you specify more than one file at the command line, VS Code will open only a single instance.

If you specify more than one folder at the command line, VS Code will create a Multi-root
Workspace including each folder.

Argument Description

file Name of a file to open. If the file doesn't exist, it will be created and marked
as edited. You can specify multiple files by separating each file name with a
space.

https://code.visualstudio.com/docs/getstarted/locales
https://code.visualstudio.com/docs/editor/command-line#_opening-files-and-folders
https://code.visualstudio.com/docs/editor/multi-root-workspaces
https://code.visualstudio.com/docs/editor/multi-root-workspaces

Argument Description

file:line[:character] Used with the -g argument. Name of a file to open at the specified line and
optional character position.

folder Name of a folder to open. You can specify multiple folders and a new Multi-
root Workspace is created.

Select a profile
You can launch VS Code with a specific profile via the --profile command-line interface option. You
pass the name of the profile after the --profile argument and open a folder or a workspace using
that profile. The command line below opens the web-sample folder with the "Web Development"
profile:
code ~/projects/web-sample --profile "Web Development"

If the profile specified does not exist, a new empty profile with the given name is created.

Working with extensions
You can install and manage VS Code extensions from the command line.

Argument Description

--install-
extension <ext>

Install an extension. Provide the full extension name publisher.extension as an
argument. Use --force argument to avoid prompts.

https://code.visualstudio.com/docs/editor/multi-root-workspaces
https://code.visualstudio.com/docs/editor/multi-root-workspaces
https://code.visualstudio.com/docs/editor/command-line#_select-a-profile
https://code.visualstudio.com/docs/editor/profiles
https://code.visualstudio.com/docs/editor/command-line#_working-with-extensions
https://code.visualstudio.com/docs/editor/extension-marketplace

Argument Description

--uninstall-
extension <ext>

Uninstall an extension. Provide the full extension name publisher.extension as
an argument.

--disable-
extensions

Disable all installed extensions. Extensions will still be visible in
the Disabled section of the Extensions view but they will never be activated.

--list-extensions List the installed extensions.

--show-versions Show versions of installed extensions, when using --list-extensions

--enable-
proposed-api
<ext>

Enables proposed api features for an extension. Provide the full extension
name publisher.extension as an argument.

Advanced CLI options
There are several CLI options that help with reproducing errors and advanced setup.

Argument Description

--extensions-dir
<dir>

Set the root path for extensions. Has no effect in Portable Mode.

--user-data-dir
<dir>

Specifies the directory that user data is kept in, useful when running as root. Has
no effect in Portable Mode.

https://code.visualstudio.com/docs/editor/command-line#_advanced-cli-options
https://code.visualstudio.com/docs/editor/portable
https://code.visualstudio.com/docs/editor/portable

Argument Description

-s, --status Print process usage and diagnostics information.

-p, --performance Start with the Developer: Startup Performance command enabled.

--disable-gpu Disable GPU hardware acceleration.

--verbose Print verbose output (implies --wait).

--prof-startup Run CPU profiler during startup.

--upload-logs Uploads logs from current session to a secure endpoint.

Multi-root

--add <dir> Add folder(s) to the last active window for a multi-root workspace.

Create remote tunnel

VS Code integrates with other remote environments to become even more powerful and flexible. Our
goal is to provide a cohesive experience that allows you to manage both local and remote machines
from one, unified CLI.

The Visual Studio Code Remote - Tunnels extension lets you connect to a remote machine, like a
desktop PC or VM, via a secure tunnel. Tunneling securely transmits data from one network to
another. You can then securely connect to that machine from anywhere, without the requirement of
SSH.

We've built functionality into the code CLI that will initiate tunnels on remote machines. You can run:

code tunnel

to create a tunnel on your remote machine. You may connect to this machine through a web or
desktop VS Code client.

You can review the other tunneling commands by running code tunnel -help:

https://code.visualstudio.com/docs/editor/command-line#_create-remote-tunnel
https://code.visualstudio.com/docs/remote/remote-overview
https://marketplace.visualstudio.com/items?itemName=ms-vscode.remote-server

As you may need to run the CLI on a remote machine that can't install VS Code Desktop, the CLI is
also available for standalone install on the VS Code download page.

For more information on Remote Tunnels, you can review the Remote Tunnels documentation.

Opening VS Code with URLs
You can also open projects and files using the platform's URL handling mechanism. Use the following
URL formats to:

Open a project

vscode://file/{full path to project}/

vscode://file/c:/myProject/

Open a file

vscode://file/{full path to file}

https://code.visualstudio.com/insiders/
https://code.visualstudio.com/docs/remote/tunnels
https://code.visualstudio.com/docs/editor/command-line#_opening-vs-code-with-urls

vscode://file/c:/myProject/package.json

Open a file to line and column

vscode://file/{full path to file}:line:column

vscode://file/c:/myProject/package.json:5:10

You can use the URL in applications such as browsers or file explorers that can parse and redirect the
URL. For example, on Windows, you could pass a vscode:// URL directly to the Windows Explorer or
to the command line as start vscode://{full path to file}.

Note: If you are using VS Code Insiders builds, the URL prefix is vscode-insiders://.

Next steps
Read on to find out about:

• Integrated Terminal - Run command-line tools from inside VS Code.
• Basic Editing - Learn the basics of the VS Code editor.
• Code Navigation - VS Code lets you quickly understand and move through your source code.

Common questions

'code' is not recognized as an internal or external command

Your OS cannot find the VS Code binary code on its path. The VS Code Windows and Linux
installations should have installed VS Code on your path. Try uninstalling and reinstalling VS Code.
If code is still not found, consult the platform-specific setup topics for Windows and Linux.

https://code.visualstudio.com/insiders
https://code.visualstudio.com/docs/editor/command-line#_next-steps
https://code.visualstudio.com/docs/terminal/basics
https://code.visualstudio.com/docs/editor/codebasics
https://code.visualstudio.com/docs/editor/editingevolved
https://code.visualstudio.com/docs/editor/command-line#_common-questions
https://code.visualstudio.com/docs/editor/command-line#_code-is-not-recognized-as-an-internal-or-external-command
https://code.visualstudio.com/docs/setup/windows
https://code.visualstudio.com/docs/setup/linux

On macOS, you need to manually run the Shell Command: Install 'code' command in
PATH command (available through the Command Palette Ctrl+Shift+P). Consult
the macOS specific setup topic for details.

How do I get access to a command line (terminal) from within VS Code?

VS Code has an Integrated Terminal where you can run command-line tools from within VS Code.

Can I specify the settings location for VS Code in order to have a portable version?

Not directly through the command line, but VS Code has a Portable Mode, which lets you keep
settings and data in the same location as your installation, for example, on a USB drive.

https://code.visualstudio.com/docs/setup/mac
https://code.visualstudio.com/docs/editor/command-line#_how-do-i-get-access-to-a-command-line-terminal-from-within-vs-code
https://code.visualstudio.com/docs/terminal/basics
https://code.visualstudio.com/docs/editor/command-line#_can-i-specify-the-settings-location-for-vs-code-in-order-to-have-a-portable-version
https://code.visualstudio.com/docs/editor/portable

Updates for this guide can be found at:
https://code.visualstudio.com/docs

Updated: July 2023

https://code.visualstudio.com/docs

	Basic Editing
	Keyboard shortcuts
	Multiple selections (multi-cursor)
	Multi-cursor modifier
	Shrink/expand selection

	Column (box) selection
	Column Selection mode

	Save / Auto Save
	Hot Exit
	Find and Replace
	Seed Search String From Selection
	Find In Selection
	Advanced find and replace options
	Multiline support and Find Widget resizing

	Search across files
	Advanced search options
	Search and replace
	Case changing in regex replace

	Search Editor
	Search Editor commands and arguments
	Search Editor context default
	Reuse last Search Editor configuration

	IntelliSense
	Formatting
	Folding
	Fold selection

	Indentation
	Auto-detection

	File encoding support
	Next steps
	Common questions
	Is it possible to globally search and replace?
	How do I turn on word wrap?
	How can I avoid placing extra cursors in word wrapped lines?

	Extension Marketplace
	Browse for extensions
	Install an extension
	Find and install an extension
	Extension details
	Extensions view filter and commands
	Search for an extension

	Manage extensions
	List installed extensions
	Uninstall an extension
	Disable an extension
	Enable an extension
	Extension auto-update
	Update an extension manually

	Recommended extensions
	Ignoring recommendations

	Configuring extensions
	Command line extension management
	Extensions view filters
	Sorting
	Categories and tags

	Install from a VSIX
	Workspace recommended extensions
	Next steps
	Common questions
	Where are extensions installed?
	Whenever I try to install any extension, I get a connect ETIMEDOUT error
	Can I download an extension directly from the Marketplace?
	Can I stop VS Code from providing extension recommendations?
	Can I trust extensions from the Marketplace?

	IntelliSense
	IntelliSense for your programming language
	IntelliSense features
	Types of completions
	Customizing IntelliSense
	Settings
	Tab Completion
	Locality Bonus
	Suggestion selection
	Snippets in suggestions
	Key bindings

	Enhance completions with AI
	Troubleshooting
	Next steps
	Common questions
	Why am I not getting any suggestions?
	Why am I not seeing method and variable suggestions?

	Code Navigation
	Quick file navigation
	Breadcrumbs
	Breadcrumb customization
	Symbol order in Breadcrumbs
	Breadcrumb keyboard navigation

	Go to Definition
	Go to Type Definition
	Go to Implementation
	Go to Symbol
	Open symbol by name
	Peek
	Bracket matching
	Bracket Pair Colorization

	Reference information
	Rename symbol
	Errors & warnings
	Code Action
	Inlay Hints
	Outgoing link protection
	Next steps
	Common questions
	How can I automatically select the second entry in Quick Open instead of the first?
	How can I configure Ctrl+Tab to navigate across all editors of all groups
	How can I navigate between recently used editors without a picker

	Refactoring
	Code Actions = Quick Fixes and refactorings
	Refactoring actions
	Extract Method
	Extract Variable

	Rename symbol
	Keybindings for Code Actions
	Extensions with refactorings
	Next steps
	Common questions
	Why don't I see any lightbulbs when there are errors in my code?

	AI Tools in VS Code
	Prerequisites
	Sign in and sign up
	Activate your free trial

	Using Copilot
	Inline suggestions
	Chat view
	Slash commands

	Inline chat
	Additional resources

	Debugging
	Debugger extensions
	Start debugging
	Run and Debug view
	Run menu
	Launch configurations
	Launch versus attach configurations
	Add a new configuration

	Debug actions
	Run mode

	Breakpoints
	Logpoints
	Data inspection
	Launch.json attributes
	Variable substitution
	Platform-specific properties
	Global launch configuration
	Advanced breakpoint topics
	Conditional breakpoints
	Inline breakpoints
	Function breakpoints
	Data breakpoints

	Debug Console REPL
	Redirect input/output to/from the debug target
	Multi-target debugging
	Compound launch configurations

	Remote debugging
	Automatically open a URI when debugging a server program
	Trigger Debugging via Edge or Chrome
	Triggering an Arbitrary Launch Config

	Next steps
	Common questions
	What are the supported debugging scenarios?
	I do not see any launch configurations in the Run and Debug view dropdown. What is wrong?

	Profiles in Visual Studio Code
	Create a Profile
	Check the current profile
	Edit a profile
	Workspace associations

	Managing profiles
	Switch profiles
	Rename a profile
	Delete a profile

	Profile contents
	Share Profiles
	Export
	Save as a GitHub gist
	Save as a local file

	Import

	Uses for Profiles
	Demos
	Education
	Report VS Code issues

	Profile Templates
	Python Profile Template
	Data Science Profile Template
	Doc Writer Profile Template
	Node.js Profile Template
	Angular Profile Template
	Java General Profile Template
	Java Spring Profile Template

	Command line
	Common Questions
	Where are profiles kept?
	Where is the UI State globalState.json file?
	What is a Temporary Profile?
	How can I remove the profile from my project?
	Do profiles sync across machines (via Settings Sync)?
	Why are some settings not exported when exporting a profile?

	Command Line Interface (CLI)
	Command line help
	Launching from command line
	Core CLI options
	Opening Files and Folders
	Select a profile
	Working with extensions
	Advanced CLI options
	Create remote tunnel

	Opening VS Code with URLs
	Next steps
	Common questions
	'code' is not recognized as an internal or external command
	How do I get access to a command line (terminal) from within VS Code?
	Can I specify the settings location for VS Code in order to have a portable version?

